C1 1 Answers - Worksheet E DIFFERENTIATION a −1 + k + 3 = 0 2 k = −2 b f ′(x) = 3x2 − 4x ∴ 3x2 − 4x ≥ 0 x(3x − 4) ≥ 0 x ≤ 0 and x ≥ a dy dx = 3x2 − 3 3x2 − 3 = 0 x2 = 1 x=±1 ∴ (−1, 3) and (1, −1) b PQ2 = 22 + 42 = 20 SP: 4 3 ∴ PQ = 3 a y = 0 ⇒ x(x + 3)2 = 0 4 a volume = 2x2h = 288 x = −3, 0 b A = 2x2 + 2(2xh) + 2(xh) = 2x2 + 6xh 3x2 + 12x + 9 ≤ 0 = 2x2 + (6x × 3(x + 3)(x + 1) ≤ 0 = 2x2 + ∴ −3 ≤ x ≤ −1 c 144 x2 ∴ h= ∴ (−3, 0), (0, 0) b f ′(x) = 3x2 + 12x + 9 decreasing when 20 = 2 5 c dA dx 864 x = 4x − 864x−2 SP: O x e (−1, −4) d2 A dx 2 = 4 + 1728x−3 when x = 6, d2 A dx 2 a 2x − 5 + 2 x =0 6 a (2x − 1)(x − 2) = 0 1 2 b SP: ,2 = 12 > 0 ∴ minimum = 1 2 x − 12 = − 14 x − 12 − 4x−2 − 32 + 8x−3 − 4x−2 = 0 1 2 x 1 2 x−2( x 2 − 8) = 0 3 x2 = 8 x=4 ∴ (4, 3) x=±1 when x = 4, d2 y dx 2 y ( 12 , 0) O d2 A dx 2 3 b f ′(x) = 2 − 2x−2 ∴ 2 − 2x−2 = 0 x2 = 1 c dy dx d2 y dx 2 2x2 − 5x + 2 = 0 x= ) 4x − 864x−2 = 0 x3 = 216 x = 3 216 = 6 d min A = 216 y (−3, 0) 5 144 x2 (2, 0) (1, −1) x (−1, −9) Solomon Press d2 y dx 2 = 3 32 > 0 ∴ minimum C1 7 DIFFERENTIATION a dh dt Answers - Worksheet E = 8t3 − 24t2 + 16t 1 4 b when t = dh dt 8 − = 1 8 = 2 85 3 3 2 x = −3k, k when x = k, y = k3 + 3k3 − 9k3 = −5k3 ∴ stationary at (k, −5k3) when x = −3k, c y = −27k3 + 27k3 + 27k3 = 27k3 ∴ (−3k, 27k3) 8t − 24t + 16t = 0 8t(t − 1)(t − 2) = 0 t = 0, 1, 2 from graph, max when t = 1 ∴ max height = 3 cm x 2 − ( 12 x) 2 a height of XS = 3 4 = 1000 3x 2 ∴ l= 3 4 b A = (2 × c ×x× or x2 + (3x × = 3 2 (x2 + SP: 3 2 3 2 x x × l = 250 x2) + 3xl 3 2 = x2 = 1000 3 3x 2 = dA dx 1000 3 3x 2 ) 2000 ) x 3 2 (2x − 2000x−2) 3 2 (2x − 2000x−2) = 0 x3 = 1000 x = 10 d min A = 150 3 e d2 A dx 2 = 3 2 (2 + 4000x−3) when x = 10, d2 A dx 2 x2 + 2kx − 3k2 = 0 b (x + 3k)(x − k) = 0 +4 2 1 2 = 3x2 + 6kx − 9k2 ⇒ cm per second volume = dy dx stationary when 3x2 + 6kx − 9k2 = 0 , = 8( 14 )3 − 24( 14 )2 + 16( 14 ) c SP: 9 a page 2 d2 A dx 2 =3 3 > 0 ∴ minimum Solomon Press
© Copyright 2026 Paperzz