Bell Work Solve. 0 ≤ x < 2π cosx + sinxcosx = 0 Double-Angle Identities sin 2u 2sinu cosu cos 2 u sin 2 u cos 2u 2 cos 2 u 1 1 2sin 2 u 2 tanu tan 2u 2 1 tan u Prove… sin 2u 2sinu cosu cos 2 u sin 2 u cos 2u 2 cos 2 u 1 1 2sin 2 u 2 tanu tan 2u 1 tan 2 u Prove the Identity cos4x – sin4x = cos(2x) Power-Reducing Identities 1 cos 2u sin u 2 1 cos 2u 2 cos u 2 1 cos 2u 2 tan u 1 cos 2u 2 Example Rewrite sin4x in terms of trigonometric functions with no power greater than 1. Half-Angle Identities u 1 cosu sin 2 2 u 1 cosu cos 2 2 1 cosu 1 cosu u 1 cosu tan 2 sinu sinu 1 cosu Example Use half-angle identities to find the exact value of sin15º without a calculator. Example Solve sin(2x) = cosx. 0 ≤ x < 2π Homework 5.4 (pg.432) #1-4,6,8,20,24,32
© Copyright 2026 Paperzz