Transforming Graphs Vertical Translation f (x) y 3 2 1 x 0 -3 -2 -1 0 1 2 3 -1 -2 -3 Vertical Translation g ( x) = f ( x) + 1.5 f (x) y y 3 3 2 2 1 -3 -2 -1 0 1 2 3 -2 -1 0 -1 -2 -2 -3 -3 1 2 3 Horizontal Translation Horizontal Translation f (x) g ( x ) = f ( x + 2) y g ( x ) = f ( x + 2) y y y 3 3 3 3 2 2 2 2 1 1 1 x 0 -2 x 0 -3 -1 f (x) -3 If g(x) = f(x) + c, then the graph of g(x) is the graph of f(x) shifted up c units. If g(x) = f(x) – c, then the graph of g(x) is the graph of f(x) shifted down c units. 1 x 0 Vertical Translation -1 0 1 2 3 x 0 -3 -2 -1 0 1 2 3 1 x 0 -3 -2 -1 0 1 2 3 x 0 -3 -2 -1 0 -1 -1 -1 -1 -2 -2 -2 -2 -3 -3 -3 -3 1 2 3 1 Horizontal Translation Horizontal Translation f (x) g ( x ) = f ( x − 2) y If g(x) = f(x + c), then the graph of g(x) is the graph of f(x) shifted left c units. y 3 3 2 2 1 1 x 0 -3 Horizontal Translation f (x) y 3 3 2 2 1 -3 -2 -1 0 1 2 3 -2 -1 0 -1 -1 -2 -2 -3 -3 1 2 3 x 0 -3 -2 -1 0 -1 -1 -2 -2 -3 -3 1 2 3 x 0 -3 0 If g(x) = f(x + c), then the graph of g(x) is the graph of f(x) shifted left c units. If g(x) = f(x – c), then the graph of g(x) is the graph of f(x) shifted right c units. 1 x 0 -1 Horizontal Translation g ( x ) = f ( x − 2) y -2 1 2 3 2 Reflection about the x-axis y y y 3 3 3 3 2 2 2 2 1 x 0 -2 g ( x) = − f ( x ) f (x) y 1 -3 Reflection about the x-axis g ( x) = − f ( x ) f (x) -1 0 1 2 3 -3 -2 -1 1 1 x 0 0 1 2 3 x 0 -3 -2 -1 0 1 2 3 -2 -1 -1 -1 -2 -2 -2 -2 -3 -3 -3 -3 -3 -2 3 2 2 -1 Reflection about the y-axis -2 0 1 2 3 -2 -1 -2 -2 -3 -3 3 2 2 2 2 1 1 1 2 3 x 0 -3 -2 -1 0 2 3 y y 3 1 1 g ( x) = f (− x ) f (x) 3 0 3 x 0 -1 3 -1 2 0 -3 -1 y x 1 1 x Reflection about the y-axis g ( x) = f (− x ) 0 3 y 3 0 y 2 g ( x) = f (− x ) y 1 f (x) 1 Reflection about the y-axis f (x) If g(x) =– f(x) then the graph of g(x) is the graph of f(x) reflected about the x-axis. -3 0 -1 Reflection about the x-axis x 0 -3 -1 1 2 3 1 x 0 -3 -2 -1 0 1 2 3 x 0 -3 -2 -1 0 -1 -1 -1 -1 -2 -2 -2 -2 -3 -3 -3 -3 1 Reflection about the y-axis If g(x) = f(–x) then the graph of g(x) is the graph of f(x) reflected about the y-axis. 2 Vertical Stretching Vertical Stretching g ( x ) = 2 f ( x) f (x) y y -4 y y 4 4 4 4 2 2 2 2 x 0 -6 g ( x ) = 2 f ( x) f (x) -2 0 2 4 x 0 -6 6 -4 -2 0 2 4 6 x 0 -6 -4 -2 0 2 4 -4 -2 0 -2 -2 -2 -2 -4 -4 -4 -4 Vertical Stretching 4 Vertical Crunching g ( x ) = 2 f ( x) f (x) g ( x) = f (x) y 2 y 4 x 0 -6 6 2 4 6 4 6 1 f ( x) 3y 5 5 4 4 3 3 2 2 2 x 0 -6 -4 -2 0 2 4 6 x 0 -6 -4 -2 0 2 4 6 -2 1 -2 -4 -6 Vertical Crunching g ( x) = f (x) 1 x 0 -4 -2 0 2 4 6 x 0 -6 -4 -2 0 2 Vertical Stretching 1 f ( x) 3y If g(x) = cf(x) then the graph of g(x) is the graph of f(x) stretched by a factor of c if c is a constant greater than 1. If g(x) = cf(x) then the graph of g(x) is the graph of f(x) crunched by a factor of c if c is a constant between 0 and 1. 5 4 3 2 y 5 4 1 3 2 1 -4 -2 0 2 4 6 x 0 x 0 -6 -6 -4 -2 0 2 4 6 1 Transformation Summary Using Transformations g(x) = f(x) + c, Shift UP g(x) = f(x) – c, Shift DOWN g(x) = f(x + c), Shift LEFT g(x) = f(x – c), Shift RIGHT g(x) = – f(x) Reflect about the X-AXIS g(x) = f(–x) Reflect about the Y-AXIS g(x) = cf(x) Vertical Stretch if c > 1. g(x) = cf(x) Vertical Crunch if 0 < c < 1. How is the graph of g(x) = |x – 2| + 3 related to the graph of f(x) = |x|? What transformations would turn f(x) into g(x) h(x)= f(x – 2)=|x – 2| (shift right 2) g(x)= h(x) + 3= |x – 2|+ 3 (shift up 3.) The graph of g(x) is the graph of f(x) shifted right 2 and up 3. Using Transformations f ( x) =| x | Using Transformations g ( x) =| x − 2 | +3 y 10 8 6 6 h( x) = 2 f ( x) ( vertical stretch) 4 4 g ( x) = − h( x) ( vertical reflection) 2 x 0 -4 What transformations would turn f ( x) into g ( x)? 8 2 -6 How is the graph of g ( x) = −2 x related to the graph of f ( x) = x? y 10 -2 0 2 4 6 x 0 -6 -4 -2 0 -2 -2 -4 -4 2 4 6 Using Transformations f ( x) = x 1 How is the graph of g ( x) = − ( x + 2) 2 + 3 related to 2 the graph of f ( x) = x 2? y 6 6 4 4 2 2 x 0 0 Using Transformation g ( x ) = −2 x y 2 4 6 8 10 What transformations would turn f ( x) into g ( x)? x 0 12 0 -2 -2 -4 -4 -6 -6 The graph of g ( x) is the graph of f ( x) stretched and reflected vertically. 2 4 6 8 10 12 h( x) = f ( x + 2) = ( x + 2) 2 (left shift 2) 1 1 k ( x) = h( x) = ( x + 2) 2 ( vertical crunch) 2 2 1 p ( x) = − k ( x) = − ( x + 2) 2 ( vertical reflection) 2 1 g ( x) = p ( x) + 3 = − ( x + 2) 2 + 3 ( vertical shift 3) 2 1 Using Transformations 1 g ( x) = − ( x + 2) 2 + 3 2 y f ( x) = x 2 y 6 6 4 4 2 2 x 0 -6 -4 -2 0 2 4 6 x 0 -6 -4 -2 0 -2 -2 -4 -4 -6 -6 2 4 6 2
© Copyright 2026 Paperzz