Quiz 3 Lucy D’Agostino McGowan September 9, 2014 Q1 Rosner’s Ch 5 Nutrition set of problems, 5.6 - 5.9. 5.6 140−124 20 = 16 20 = .8 1-pnorm(.8) ## [1] 0.2119 21.2% 5.7 90−124 20 = −1.7 1-pnorm(1.7) ## [1] 0.04457 4.46% 5.8 140−121 19 =1 1-pnorm(1) ## [1] 0.1587 15.9% 5.9 90−121 19 = −1.63158 1-pnorm(1.63158) ## [1] 0.05138 5.2% Q2 Rosner’s Ch 5 Nutrition set of problems, 5.21 - 5.24. 5.21 2.5−3.5 0.6 = −1 0.6 = -1.667 1 pnorm(-1.66667) ## [1] 0.04779 #or pnorm(2.5,3.5,0.6) ## [1] 0.04779 5.22 2.5−4 0.5 = −1.5 0.5 = -3 pnorm(-3) ## [1] 0.00135 #or pnorm(2.5,4,0.5) ## [1] 0.00135 5.23 2.5−(4−0.03∗(30)) 0.02∗30 = 2.5−3.1 0.6 = -1 pnorm(-1) ## [1] 0.1587 #or pnorm(2.5,4-0.03*30,0.02*30) ## [1] 0.1587 5.24 5.23 2.5−(4−0.03∗(50)) 0.02∗50 = 2.5−2.5 0.6 =0 pnorm(0) ## [1] 0.5 #or pnorm(2.5,4-0.03*50,0.02*50) ## [1] 0.5 Q3a Let X ~ Binom(20, 0.17). Let Y ~ N( mu=E[X], sigma=sqrt(V[X]) ), i.e. Y is Normal with mean and variance equal to that of the Binomial X. Take a large sample from each of X and Y and sort them from smallest to largest. Plot Y by X. By large, I mean try getting samples of 10ˆ6. If that crashes your laptop, go with 10ˆ5. 2 −5 0 y 5 10 x<-rbinom(10^6,20,.17) mean.x <- 20*.17 sd.x <- sqrt(20*.17*(1-.17)) y<-rnorm(10^6,mean.x, sd.x) x<-sort(x) y<-sort(y) plot(x,y) 0 2 4 6 8 x Q3b Using the samples from 3, estimate the following probabilities: q3b1 <- mean.x+sd.x q3b2 <- mean.x+(2*sd.x) q3b2.5 <- mean.x+(2.5*sd.x) q3b3 <- mean.x+(3*sd.x) • P( X > E[X] + 1*sqrt(V[X]) ) sum(x > q3b1)/10^6 ## [1] 0.1095 • P( Y > E[X] + 1*sqrt(V[X]) ) 3 10 12 sum(y > q3b1)/10^6 ## [1] 0.1587 • P( X > E[X] + 2*sqrt(V[X]) ) sum(x > q3b2)/10^6 ## [1] 0.04073 • P( Y > E[X] + 2*sqrt(V[X]) ) sum(y > q3b2)/10^6 ## [1] 0.02286 • P( X > E[X] + 2.5*sqrt(V[X]) ) sum(x > q3b2.5)/10^6 ## [1] 0.01251 • P( Y > E[X] + 2.5*sqrt(V[X]) ) sum(y > q3b2.5)/10^6 ## [1] 0.006184 • P( X > E[X] + 3*sqrt(V[X]) ) sum(x > q3b3)/10^6 ## [1] 0.003214 • P( Y > E[X] + 3*sqrt(V[X]) ) sum(y > q3b3)/10^6 ## [1] 0.001302 Q4a Repeat Q3a for Binom(100, 0.17). x<-rbinom(10^6,100,.17) mean.x <- 100*.17 sd.x <- sqrt(100*.17*(1-.17)) y<-rnorm(10^6,mean.x, sd.x) x<-sort(x) y<-sort(y) plot(x,y) 4 30 20 0 10 y 5 10 15 20 x Q4b Repeat Q3b for Binom(100, 0.17). q3b1 <- mean.x+sd.x q3b2 <- mean.x+(2*sd.x) q3b2.5 <- mean.x+(2.5*sd.x) q3b3 <- mean.x+(3*sd.x) • P( X > E[X] + 1*sqrt(V[X]) ) sum(x > q3b1)/10^6 ## [1] 0.1747 • P( Y > E[X] + 1*sqrt(V[X]) ) sum(y > q3b1)/10^6 ## [1] 0.1587 • P( X > E[X] + 2*sqrt(V[X]) ) sum(x > q3b2)/10^6 5 25 30 35 ## [1] 0.02712 • P( Y > E[X] + 2*sqrt(V[X]) ) sum(y > q3b2)/10^6 ## [1] 0.02262 • P( X > E[X] + 2.5*sqrt(V[X]) ) sum(x > q3b2.5)/10^6 ## [1] 0.008045 • P( Y > E[X] + 2.5*sqrt(V[X]) ) sum(y > q3b2.5)/10^6 ## [1] 0.006088 • P( X > E[X] + 3*sqrt(V[X]) ) sum(x > q3b3)/10^6 ## [1] 0.00205 • P( Y > E[X] + 3*sqrt(V[X]) ) sum(y > q3b3)/10^6 ## [1] 0.001265 Q5a Repeat Q3a for Binom(1000, 0.17). x<-rbinom(10^6,1000,.17) mean.x <- 1000*.17 sd.x <-sqrt(1000*.17*(1-.17)) y<-rnorm(10^6,mean(x), sd(x)) x<-sort(x) y<-sort(y) plot(x,y) 6 200 120 160 y 120 140 160 180 x Q5b Repeat Q3b for Binom(1000, 0.17). q3b1 <- mean.x+sd.x q3b2 <- mean.x+(2*sd.x) q3b2.5 <- mean.x+(2.5*sd.x) q3b3 <- mean.x+(3*sd.x) • P( X > E[X] + 1*sqrt(V[X]) ) sum(x > q3b1)/10^6 ## [1] 0.1657 • P( Y > E[X] + 1*sqrt(V[X]) ) sum(y > q3b1)/10^6 ## [1] 0.1586 • P( X > E[X] + 2*sqrt(V[X]) ) sum(x > q3b2)/10^6 7 200 220 ## [1] 0.02538 • P( Y > E[X] + 2*sqrt(V[X]) ) sum(y > q3b2)/10^6 ## [1] 0.02263 • P( X > E[X] + 2.5*sqrt(V[X]) ) sum(x > q3b2.5)/10^6 ## [1] 0.007375 • P( Y > E[X] + 2.5*sqrt(V[X]) ) sum(y > q3b2.5)/10^6 ## [1] 0.006216 • P( X > E[X] + 3*sqrt(V[X]) ) sum(x > q3b3)/10^6 ## [1] 0.001711 • P( Y > E[X] + 3*sqrt(V[X]) ) sum(y > q3b3)/10^6 ## [1] 0.00131 Q6 Discuss what Q3 - Q5 teaches us. A bullet point discussion is fine. As we increase the number of trials, we see that the binomial distribution better approximates the normal distribution 8
© Copyright 2026 Paperzz