Lecture 23 Frobenius and Bessel In this Lecture we discuss solutions of differential equations expressed as power series expansions around a regular singular point (the Frobenius method). Of special interest are the Bessel functions which arise in the solution of Laplace's equation in cylindrical coordinates (integer index) and in the solution of the Helmholtz equation in spherical coordinates (half-integer index). For example, consider Bessel's equation In[1]:= Out[1]= DSolvex ^ 2 y ''x x y 'x x ^ 2 p ^ 2yx 0, yx, x yx BesselJp, x C1 BesselYp, x C2 which Mathematica readily recognizes as being solved by the two forms of the Bessel function. We can look at the series expansions via In[2]:= Out[2]= FullSimplify SeriesBesselJp, x , x, 0, 10 xp 2p Gamma1 p 25p x4 Gamma3 p 22p x2 Gamma2 p 27p x6 3 Gamma4 p 211p x8 3 Gamma5 p 213p x10 15 Gamma6 p Ox11 where this matches the form in Eq. (23.14) if we takes some care to see the 1/(m+1) factor appearing (factors of 1/2 and 1/odd). The functions look as in the Lecture In[3]:= Out[3]= PlotBesselJ0, x, x, 0, 30, PlotRange 0.5, 1, PlotStyle Thick, AxesLabel "x", "J0 x", LabelStyle Large J0 x 1.0 0.8 0.6 0.4 0.2 0.2 0.4 5 10 15 20 25 30 x 2 Lec23_228_09.nb In[4]:= Out[4]= PlotBesselJ1, x, x, 0, 30, PlotRange 0.5, 1, PlotStyle Thick, AxesLabel "x", "J1 x", LabelStyle Large J1 x 1.0 0.8 0.6 0.4 0.2 0.2 0.4 In[5]:= Out[5]= PlotBesselJ2, x, x, 0, 30, PlotRange 0.5, 1, PlotStyle Thick, AxesLabel "x", "J2 x", LabelStyle Large J2 x 1.0 0.8 0.6 0.4 0.2 0.2 0.4 In[6]:= Out[6]= 5 10 15 20 25 30 x 5 10 15 20 25 30 x PlotBesselJ3, x, x, 0, 30, PlotRange 0.5, 1, PlotStyle Thick, AxesLabel "x", "J3 x", LabelStyle Large J3 x 1.0 0.8 0.6 0.4 0.2 0.2 0.4 5 10 15 20 25 30 Also consider the asymptotic limit x Lec23_228_09.nb In[7]:= PlotBesselJ3, x 2 Cosx x 7 4 3 , x, 0, 1000, PlotRange 5, 5, PlotStyle Thick, AxesLabel "x", "Ratio", LabelStyle Large Out[7]= Ratio 4 2 x 200 400 600 800 1000 2 4 Interesting - the ratio is trying to settle down to unity, but there remain fluctuations that may be just numerics since both numerator and denominator are smooth functions! Now consider the second solution with singular behavior at the origin In[8]:= Out[8]= FullSimplify SeriesBesselYp, x , x, 0, 10 xp 2p Cosp Gammap 22p Cosp Gammap x2 p 25p Cosp Gamma2 p x4 27p Cosp Gamma3 p x6 211p Cosp Gamma4 p x8 3 xp 2p Gammap 211p Gamma4 p x8 3 3 213p Cosp Gamma5 p x10 15 22p Gamma1 p x2 25p Gamma2 p x4 213p Gamma5 p x10 15 Ox 11 Ox11 27p Gamma3 p x6 3 4 Lec23_228_09.nb In[9]:= PlotBesselY0, x, x, 0, 30, PlotRange 5, 1, PlotStyle Thick, AxesLabel "x", "Y0 x", LabelStyle Large Y0 x 1 Out[9]= 1 2 3 4 5 5 10 15 20 25 30 x There is a Log[x] singularity at the origin In[10]:= PlotBesselY1, x, x, 0, 30, PlotRange 5, 1, PlotStyle Thick, AxesLabel "x", "Y1 x", LabelStyle Large Y1 x 1 Out[10]= In[11]:= 1 2 3 4 5 5 10 15 20 25 30 x PlotBesselY2, x, x, 0, 30, PlotRange 5, 1, PlotStyle Thick, AxesLabel "x", "Y2 x", LabelStyle Large Y2 x 1 Out[11]= 1 2 3 4 5 5 10 15 20 25 30 x Lec23_228_09.nb In[12]:= PlotBesselY3, x, x, 0, 30, PlotRange 5, 1, PlotStyle Thick, AxesLabel "x", "Y3 x", LabelStyle Large Y3 x 1 Out[12]= 5 10 15 20 25 30 1 2 3 4 5 x So qualitatively similar to the regular Bessel function except at the origin. Finally consider the half-integer case - the spherical Bessel function (solve Eq. (23.9)) In[13]:= Out[13]= DSolvex ^ 2 y ''x 2x y 'x x ^ 2 ll 1yx 0, yx, x yx C1 SphericalBesselJ l, x C2 SphericalBesselY l, x So we can expand and plot as above In[14]:= Out[14]= FullSimplify SeriesSphericalBesselJ p, x , x, 0, 10 21p xp 3 23p 5 Gamma 2 p 28p 3 In[15]:= Out[15]= Gamma 2 p x6 9 Gamma 2 x2 212p p 3 26p 7 Gamma 2 p 214p x8 11 Gamma 2 x4 p 15 x10 13 Gamma 2 1 x2 x4 120 x6 5040 x8 362 880 x10 Ox11 39 916 800 which we can compare to (Eq.(23.18)) Out[16]= p FullSimplify SeriesSphericalBesselJ 0, x , x, 0, 10 6 In[16]:= Ox11 FullSimplify SeriesSinx x , x, 0, 10 1 x2 6 x4 120 x6 5040 Yep, the same. Plotting we have x8 362 880 x10 39 916 800 Ox 11 5 6 Lec23_228_09.nb In[17]:= Out[17]= PlotSphericalBesselJ 0, x, x, 0, 30, PlotRange 0.5, 1, PlotStyle Thick, AxesLabel "x", "j0 x", LabelStyle Large j0 x 1.0 0.8 0.6 0.4 0.2 0.2 0.4 In[18]:= Out[18]= Out[19]= x PlotSphericalBesselJ 1, x, x, 0, 30, PlotRange 0.5, 1, PlotStyle Thick, AxesLabel "x", "j1 x", LabelStyle Large j1 x 1.0 0.8 0.6 0.4 0.2 0.2 0.4 In[19]:= 5 10 15 20 25 30 5 10 15 20 25 30 x PlotSphericalBesselJ 2, x, x, 0, 30, PlotRange 0.5, 1, PlotStyle Thick, AxesLabel "x", "j2 x", LabelStyle Large j2 x 1.0 0.8 0.6 0.4 0.2 0.2 0.4 5 10 15 20 25 30 x Lec23_228_09.nb In[20]:= 7 PlotSphericalBesselJ 3, x, x, 0, 30, PlotRange 0.5, 1, PlotStyle Thick, AxesLabel "x", "j3 x", LabelStyle Large j3 x 1.0 0.8 0.6 0.4 0.2 Out[20]= 0.2 0.4 5 10 15 20 25 30 x Similar to the usual Bessel functions, but, as expected, damping more quickly. As discussed in the lecture, the zeroes of the Bessel functions play a central role their use as basis functions and Mathematica supplies a function to find these zeros. The nth zero of J p (greater than zero - i.e., the origin is not included in the count) is given by In[21]:= xp, n : BesselJZero p, n In[22]:= x0, 1 Out[22]= BesselJZero 0, 1 Just symbolic - So try In[23]:= xp, n : NBesselJZero p, n In[24]:= x0, 1 Out[24]= 2.40483 In[25]:= x1, 1 Out[25]= 3.83171 In[26]:= x1, 2 Out[26]= 7.01559 In[27]:= Out[27]= x1, 2 x1, 1 1.01346 Not separated by , but for large n In[28]:= Out[28]= x1, 101 x1, 100 1. Now let's verify the orthogonality relationship of Eq. (23.24) 8 Lec23_228_09.nb In[29]:= Out[29]= Integrate BesselJp, BesselJZero p, m R0BesselJp, BesselJZero p, n R0, , 0, R0 IfRep 1, R02 BesselJ1 p, BesselJZero p, m BesselJp, BesselJZero p, n BesselJZero p, m BesselJ1 p, BesselJZero p, n BesselJp, BesselJZero p, m BesselJZero p, n BesselJZero p, m2 BesselJZero p, n2 , Integrate BesselJp, BesselJZero p, m BesselJp, BesselJZero p, n , 0, R0, Assumptions Rep 1 R0 In[30]:= Out[30]= R0 , FullSimplify , Assumptions p Integers, p 1 R0 BesselJ1 p, BesselJZero p, m BesselJp, BesselJZero p, n BesselJZero p, m 2 BesselJ1 p, BesselJZero p, n BesselJp, BesselJZero p, m BesselJZero p, n BesselJZero p, m BesselJZero p, n 2 2 Still in a messy form. Let's do an explicit version for p = 0. 2 In[31]:= R0 ^ 2 BesselJ1, BesselJZero 0, m ^ 2 Integrate BesselJ0, BesselJZero 0, m R0BesselJ0, BesselJZero 0, n R0, , 0, R0 Out[31]= 2 BesselJ0, BesselJZero 0, n BesselJ1, BesselJZero 0, m BesselJZero 0, m BesselJ0, BesselJZero 0, m BesselJ1, BesselJZero 0, n BesselJZero 0, n BesselJ1, BesselJZero 0, m BesselJZero 0, m BesselJZero 0, n 2 In[32]:= Out[32]= 2 2 FullSimplify , Assumptions p Integers, p 1 2 BesselJ0, BesselJZero 0, n BesselJ1, BesselJZero 0, m BesselJZero 0, m BesselJ0, BesselJZero 0, m BesselJ1, BesselJZero 0, n BesselJZero 0, n BesselJ1, BesselJZero 0, m2 BesselJZero 0, m2 BesselJZero 0, n2 Still not using all the information in the abstract case, e.g., In[33]:= Out[33]= BesselJ0, BesselJZero 0, 1 0 So make a table Lec23_228_09.nb In[34]:= TableForm Table m, n, 2 R0 ^ 2 BesselJ1, BesselJZero 0, m ^ 2 Integrate BesselJ0, BesselJZero 0, m R0 BesselJ0, BesselJZero 0, n R0, , 0, R0, m, 1, 10, n, 1, 10 Out[34]//TableForm= 1 1 1 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8 0 1 9 0 1 10 0 2 1 0 2 2 1 2 3 0 2 4 0 2 5 0 2 6 0 2 7 0 2 8 0 2 9 0 2 10 0 3 1 0 3 2 0 3 3 1 3 4 0 3 5 0 3 6 0 3 7 0 3 8 0 3 9 0 3 10 0 4 1 0 4 2 0 4 3 0 4 4 1 4 5 0 4 6 0 4 7 0 4 8 0 4 9 0 4 10 0 5 1 0 5 2 0 5 3 0 5 4 0 5 5 1 5 6 0 5 7 0 5 8 0 5 9 0 5 10 0 6 1 0 6 2 0 6 3 0 6 4 0 6 5 0 6 6 1 6 7 0 6 8 0 6 9 0 6 10 0 7 1 0 7 2 0 7 3 0 7 4 0 7 5 0 7 6 0 7 7 1 7 8 0 7 9 0 7 10 0 8 1 0 8 2 0 8 3 0 8 4 0 8 5 0 8 6 0 8 7 0 8 8 1 8 9 0 8 10 0 9 1 0 9 2 0 9 3 0 9 4 0 9 5 0 9 6 0 9 7 0 9 8 0 9 9 1 9 10 0 10 1 0 10 10 10 10 10 10 10 10 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0 0 10 10 1 Confirming the expected result- if somewhat painfully - only m = n is non-zero and is unity with the given normalization. The coefficient of Eq.(23.26) is found via 2 In[35]:= cn : R0 ^ 2 BesselJ1, BesselJZero 0, n ^ 2 Integrate BesselJ0, BesselJZero 0, n R0T0, , 0, R0 In[36]:= cn BesselJ1, BesselJZero 0, n BesselJZero 0, n 2 T0 Out[36]= which we recognize as the result in Eq.(23.26). For fun let's see what the corresponding (truncated) series looks like as a function of with both T0 and R0 set to 1. 9 10 Lec23_228_09.nb In[37]:= Out[37]= In[38]:= Out[38]= T0 1; R0 1 1 cc TableNcn, n, 1, 20 1.60197, 1.0648, 0.851399, 0.729645, 0.648524, 0.589543, 0.54418, 0.507894, 0.478012, 0.452851, 0.431284, 0.412531, 0.396028, 0.38136, 0.368208, 0.35633, 0.345532, 0.335659, 0.326587, 0.318213 Things are faster if we use numerical values In[39]:= T, m : Sumccn BesselJ0, NBesselJZero 0, n , n, 1, m In[40]:= T2 T, 2 Out[40]= In[41]:= Out[41]= 1.60197 BesselJ0, 2.40483 1.0648 BesselJ0, 5.52008 PlotT2, , 0, 1.0, PlotRange 0, 1.5, PlotStyle Thick, AxesLabel "", "T2", LabelStyle Large T2 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 In[42]:= Out[42]= T5 T, 5 1.60197 BesselJ0, 2.40483 1.0648 BesselJ0, 5.52008 0.851399 BesselJ0, 8.65373 0.729645 BesselJ0, 11.7915 0.648524 BesselJ0, 14.9309 Lec23_228_09.nb In[43]:= Out[43]= 11 PlotT5, , 0, 1.0, PlotRange 0, 1.5, PlotStyle Thick, AxesLabel "", "T5", LabelStyle Large T5 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 In[44]:= Out[44]= In[45]:= Out[45]= T10 T, 10 1.60197 BesselJ0, 2.40483 1.0648 BesselJ0, 5.52008 0.851399 BesselJ0, 8.65373 0.729645 BesselJ0, 11.7915 0.648524 BesselJ0, 14.9309 0.589543 BesselJ0, 18.0711 0.54418 BesselJ0, 21.2116 0.507894 BesselJ0, 24.3525 0.478012 BesselJ0, 27.4935 0.452851 BesselJ0, 30.6346 PlotT10, , 0, 1.0, PlotRange 0, 1.5, PlotStyle Thick, AxesLabel "", "T10", LabelStyle Large T10 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 In[46]:= Out[46]= T20 T, 20 1.60197 BesselJ0, 2.40483 1.0648 BesselJ0, 5.52008 0.851399 BesselJ0, 8.65373 0.729645 BesselJ0, 11.7915 0.648524 BesselJ0, 14.9309 0.589543 BesselJ0, 18.0711 0.54418 BesselJ0, 21.2116 0.507894 BesselJ0, 24.3525 0.478012 BesselJ0, 27.4935 0.452851 BesselJ0, 30.6346 0.431284 BesselJ0, 33.7758 0.412531 BesselJ0, 36.9171 0.396028 BesselJ0, 40.0584 0.38136 BesselJ0, 43.1998 0.368208 BesselJ0, 46.3412 0.35633 BesselJ0, 49.4826 0.345532 BesselJ0, 52.6241 0.335659 BesselJ0, 55.7655 0.326587 BesselJ0, 58.907 0.318213 BesselJ0, 62.0485 12 Lec23_228_09.nb In[47]:= Out[47]= PlotT20, , 0, 1.0, PlotRange 0, 1.5, PlotStyle Thick, AxesLabel "", "T20", LabelStyle Large T20 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
© Copyright 2025 Paperzz