Exam 1 - MATH 321: Solutions Problem 1. (a) Can the function f (x, y) = uous by suitably defining it at (0, 0)? (b) The same question as in (a) for f (x, y) = xy x2 +y 2 be made contin- sin(x2 +y 2 ) . x2 +y 2 Solution. (a) The partial limits of f along the paths x = 0 and y = 0 are equal to 0, while the partial limit of f along the path y = x is equal to 1/2. Therefore, lim(x,y)→(0,0) f (x, y) does not exist and the function cannot be suitably defined at (0, 0) to become continuous at this point. (b) We have sin(x2 + y 2 ) sin t = 1. = lim+ 2 2 (x,y)→(0,0) t→0 x +y t lim Thus defining f (0, 0) = 1 makes f continuous at (0, 0). Since f is also continuous at all other points of R2 , it becomes continuous everywhere. 2 2 Problem 2. Let f (x, y) = xey − yex . (a) Find the equation for the tangent plane to the graph of f at (1, 2). (b) What point on the surface z = x2 −y 2 has a tangent plane parallel to the plane found in part (a)? Solution. (a) The tangent plane equation at (x0 , y0 ) is z = f (x0 , y0 )+ + ∂f (x0 , y0 )(y − y0 ). We have f (1, 2) = e4 − 2e, ∂y 2 2 2xyex ) = e4 − 4e, ∂f (1, 2) = (2xyey − ∂y (x,y)=(1,2) x2 4 e ) = 4e − e. Therefore, the tangent plane equation is ∂f (x0 , y0 )(x − x0 ) ∂x 2 ∂f (1, 2) = (ey − ∂x (x,y)=(1,2) z = e4 − 2e + (e4 − 4e)(x − 1) + (4e4 − e)(y − 2), or (e4 − 4e)(x − 1) + (4e4 − e)(y − 2) − z + e4 − 2e = 0. (b) A point (x1 , y1 , z1 ) on the surface z = x2 − y 2 must satisfy the condition that the gradient of the function F (x, y, z) = x2 − y 2 − z at this point is parallel to the normal vector to the plane of part (a), i.e., (2x, −2y, −1) = t(e4 − 4e, 4e4 − e, −1). This is possible only for t = 1, 2 2 x1 = 21 e4 −2e, y1 = 2e4 − 12 e, z1 = x21 −y12 = 12 e4 −2e − 2e4 − 12 e = 15 2 e 4 − 15 8 e. 4 Problem 3. Determine the equation of the tangent line to the given path at the specified value of t. 1 2 (a) (sin 3t, cos 3t, 2t5/2 ); t = 1. (b) (cos2 t, 3t − t3 , t); t = 0. −c (t) in R3 at t = t is Solution. The tangent line to the given path → 0 → − → − → − 0 given by ` (u) = c (t0 )+ c (t0 )u, with a free parameter −∞ < u < ∞. −c (1) = (sin 3, cos 3, 2), → −c 0 (1) = (3 cos 3t, −3 sin 3t, 5t3/2 ) = (a) We have → t=1 → − (3 cos 3, −3 sin 3, 5). Thus we obtain the tangent line equation ` (u) = (sin 3, cos 3, 2) + (3 cos 3, −3 sin 3, 5)u. → − → − 0 2 (b) We have c (0) = (1, 0, 0), c (0) = (−2 cos t sin t, 3 − 3t , 1) = t=0 → − (0, 3, 1). Thus we obtain the tangent line equation ` (u) = (1, 0, 0) + → − (0, 3, 1)u, or ` (u) = (1, 3u, u). → − − Problem 4. Let h : R3 → R5 and → g : R2 → R3 be given by √ → − − h (x, y, z) = (xyz, exz , x sin y, − x9 , 17) and → g (u, v) = (v 2 + 2u, π, 2 u). Find D(h ◦ g)(1, 1) using the chain rule. → − − → − − − Solution. By the chain rule, D( h ◦→ g )(1, 1) = D h (→ g (1, 1))D→ g (1, 1). → − We compute g (1, 1) = (3, π, 2), 2 2v 2 2 − − D→ g (u, v) = 0 0 , D→ g (1, 1) = 0 0 , 1 √ 0 1 0 u yz xz xy 2π 6 3π 2e6 0 3e6 zexz 0 xexz → − → − , D h (3, π, 2) = 0 −3 0 , sin y x cos y 0 D h (x, y, z) = 9 1 2 0 0 0 0 x 0 0 0 0 0 0 2π 6 3π 7π 4π 2e6 0 3e6 2 2 7e6 4e6 → − − 0 0 = 0 . 0 −3 0 0 D( h ◦ → g )(1, 1) = 1 2 2 0 0 1 0 0 0 0 0 0 Problem 5. Compute the directional derivative of f in the given − direction → v at the given point P : → − → − − (a) f (x, y, z) = xy 2 + y 2 z 3 + z 3 x, P (4, −2, −1), → v = √114 ( i + 3 j + → − 2 k ). → − → − → − − (b) f (x, y, z) = xyz , P (e, e, 0), → v = 12 i + 3 j + 4 k . 13 13 13 3 − Solution. (a) Df (P )→ v − = ∇f (P )→ v = y 2 + z 3 2xy + 2yz 3 √ 1/√14 = 3 −12 24 3/√14 = 2/ 14 → − (b) Df (P ) v − = ∇f (P )→ v = yzxyz−1 12/13 = 0 0 e 3/13 = 4/13 = √ 1/√14 3/ 14 √ (x,y,z)=(4,−2,−1) 2/ 14 √15 . 14 yz yz zx ln x yx ln x 12/13 3/13 (x,y,z)=(e,e,0) 4/13 4e . 13 Problem 6. Verify that yz 3 x2 . 3 3−36+48 √ 14 3y 2 z 2 + 3xz 2 ∂3f ∂x ∂y ∂z = ∂3f ∂z ∂y ∂x for f (x, y, z) = zexy + 2 ∂ Solution. ∂x∂∂yf∂z = ∂x∂ ∂y (exy + 3yz 2 x2 ) = ∂x (xexy + 3z 2 x2 ) = exy + xyexy + 6xz 2 . 2 ∂3f ∂ = ∂z∂ ∂y (yzexy + 2xyz 3 ) = ∂z (zexy + xyzexy + 2xz 3 ) = exy + ∂z ∂y ∂x xyexy + 6xz 2 . 3 3 Therefore ∂x∂∂yf∂z = ∂z∂∂yf∂x . Problem 7. (a) Suppose f, g, h : R → R are differentiable. Show → − that the vector field F (x, y, z) = (f (x), g(y), h(z)) is irrotational. → − → − → − (b) Show that F (x, y) = (x2 + y 2 ) i − 2xy j is not a gradient field. → → − → − −i j k → − → − ∂ ∂ = ( ∂ h(z) − ∂ Solution. (a) curl F = ∇ × F = ∂x ∂y ∂y ∂z f (x) g(y) h(z) → − → − → − → − ∂ ∂ ∂ ∂ ∂ g(y)) i −( ∂x h(z)− ∂z f (x)) j +( ∂x g(y)− ∂y f (x)) k = 0 . Therefore ∂z the field is irrotational. → − ∂ ∂ (b) The scalar curl of F is equal to ∂x (−2xy) − ∂y (x2 + y 2 ) = −4y → − which is not identically zero. Therefore F is not a gradient field.
© Copyright 2026 Paperzz