SECTION-A UNIT-I 1. If A= {1,2,3, 5, 7} and B : {2. q, s,9} then A - B will be : (B) {1,3,7} (A) {4, e} (C) {2, 5} @) nqne of these 2. If A : {1, 2, 3, 4\,8 = {3, 4, 5,6} and C : 14, 5, 6, 7\ then (A U B) fl'C is equal to : (B) {3; 4,5,6,7} (A) {4,5,6} (c) 3' {5,6,7} (D) 0 In above question (A 0 B) U C will be : {s,6,7} (c) 13,4,s,6,7| (B) t2,4, s,6} (A) ' 4. 5. @)(r,2,3,4,s,6,7) If A= {1,3,5,7,9, 11} andB:"(3,5,7,8\ {hencomplementofAinBwillbe: (B) {3,5,7} (A) {1, e, (c) {3, s,7, @) {8} IfA be a frnite set consisting ofn elements then the power set F(A) contains : (B) 2*t elements (A) ? elements 1r} s} td?,,# (c) 2'3) andB = {3'4's} ***"'r;n;f!dtr"o"""oreandBis: {r,2,4,s} 7. IfA= {0, 1} andB : (D) {3} {0,-1} thenA (A) {(0, 0), (0, 1), (-1, 0), (-1, (C) t(-1, 1), (1, x B willbe 1)} : (B) {(0, 0), (0, -1), (1, 0)' (1, (D) none of these -1)) -l)} 8. IfA has 32 elements,. B has 42 elemehts and A U B has 62 elements then the number of elements in A 0 B willbe 12 (c) 10 (B) 20 (A) (D) 30 9, Irt S be the set ofall slraight lines in a plane. The relation R in S defined by "x is parallel y" is : (B) Symmetric (A) Reflexive (C) Transitive @) All alove TJNIT-II 10. If (x) : cos x + .6 sin x then f(%) will be equal to : (A) I (B) 2 (c) zJi (D) BCA-10512560 "2 3 -- , --. ?--<-4/==-:--.?1:- <2) 12- rf sinx :] tlr"r_cot x witl be equal to zoze of&e-e : (D; p.zazea/,*e.r '(3- 1f76r7--'; (A/ : a"onffi ts equal to; ? (B) {L m il 1{. ; (D) none of these ,l-l ., will be equal to : p2 + I -r I-im (Ail 2 (cI I fi\ 7 (B) -2 (D) 0 tim *2 *bx+c --- - is equal to : ';+:cdr- er-f ^ (B) * (D) 0 XrM n -*,1r,{l*r}:' is equal to : rAl e (B) y" rCr tr (D) none of these fr+?, , l-* f""t=1 4 , {.3-r-5 , x<3 x=3 is continuous at x : 3 then the value of the l, is : x>3 (B) 3 (D) 2 \ \hlf 3 P.TO. Tifl 11. Iff -+ R s.t f(") (A) 2(x'z-l) (C) 2x2-l 12. If :R ? sin , =| 5 : 2x-1 and g : R + R s.t. g(x) - x2 then (fog) (x) is then cot x 2(x-tf (B) (D) none of these will be equal to : , : (A); (B) 4 ; 3 (c) 13. If (D) none of these + 71xy (A) =J; then ffiis equal to : (B) ; (c) I 14. lim 7 5 (D) none of these *2 -l will be equal to : *-1 *a (B) -2 (D) 0 (A) 7 a rc) e lim 16. ,-'o(t* D% isequal to : E (A) e (B) % (c) 1 (D) none of these , ' x<3 x=3 is continuous at x , x>3 : 3 then the value of the l, is : (B) 3 (D) 2 BCA-105 t2560 3 nTo. I ls. rr /(x) =lrr)t ' :::rthen (A) Continuous at"x r(x) is : (B) not continuous at x: 2 -2 (D) none of these (C) not defined at x: 2 UNIT-III 19. The roots of the quadratic equation2x2 - 13x +l 15:0 are : (B) 3,; (D) s,; :0 then 20. If cr, B are roots of the equation x2 -2x+ 3 t.* wifl be equal to : ._) (A) ? (B) T (c) -1 (D) ; a J J zL. r (-r, "f:) poldr coordinates are be the..cartesion c6oldinates oi a point, then its : (B) (D) none of these area of this triangle will be : 22. If (4, -1), (1 ,2) and(4,-3)are vertices of artriangle thenthe (B) 15 units (A) 12 units (D) 17 units (C) 16.units be : 23. The locus of the point whose distance from the origin is 4 will (A) xt -t': (C) x, + (B)x*Y:4 16 t' : 16 (D) none of these points (1, 2) and (-1, 4) is given by 24. The equatiol of the line passing through the (B)x-y-3:0 (D) x -2Y + 5 :0 (A)x+y-3:0 (C)x-Y+3:0 BCA-1O5 12s60 4 : 2s. ,, o=l_: i (^)[; (c) |.". u=[l I ;] thenA-Bis: (',[j:t i| [-l z -q] L-+ t -tJ i] *o (D) none of these '=lll **ABis *,[ll il] (D) none of these 27 . Iirverse of the (A) rcl ' r -u,n" t, [] L' ll , [-t :l ,Lo r[ -rl 3 -rl ml-o ,l l;tan.rl it 28' a'L=*' J ' a . (A) -(sin x *.cos x) (C) sin x - cos x d zg. ft{"z*) (B) cos x - sin x (D) sin x * cos x is : (A) 2a* @) (B) ao ": BCA-105 /2560 (D) 3 2*RTA 30. t; $oogrin ax = (A) tan x (C) cosec x 31. (B) cot x (D) none of these i-r rf f (x) = fi then f (2) will be equal to : (A) -)/ 7g (c) 32. If 4 t y: (A) (D) none of these sec x -| tan x then dy dx will be : x (sec x - tan x) (C) sec x (sec x + tan x) 33 (B) tan x (tan x sec If Y: ,12 r, e3* then ? dx' will 3i4i. If x2 + t' be equal to : (B) 3e3. (D) 9 e2. :6x - 2ry tben dy_ dx x-3 (A)F 3-x (B) ,. , !-r x*3 3-x (D) -.,, /1-L (c) y*r 35. A function y (A) (c) f(x) will be maximum if : )2,, d2v (g) :-*<o clx->0 s2,, (D) none of these clx- ==0 Function f(x) (A)x--1 (c) - sec x) (D) none of these (A) 9 e3. (C) 6 e3. 36. 2 t (B) x: : x3 - 3x + 4 has minimum valuel:at (B) x:2 (D)":-2 I BCA-10s/zsffi : 6 UNIT-V 4 37. Jx l'- *' dr = (A) _2 +2 +tosx+c (C) togr -t*, 2 (B)xlogx*c (D) none of these o'-3g. rIl+x. (A)sec-tx*c (C) cosec-r x (B)tan-tx*c (D) none of these 39. Iro*a* (A) ea. +c (C) 2e2* + c, (B) 4ea. + s (D) ^4x :-+c 4 40. J,un x dx = (A) log sin x + c (C) log sec x + c r1 (B) log cos x * c (D) none of these 41. Jl;: ^ a* = J_ ZX (A) \/2 -]rog1: -2x)+ c (C)-log(3 -2x)+s 42. (B) 2log (3 - 2x) + s (D) none of these l-p-' x'-16 I. ( x-a\ (A) frog|;;J.. (cl jr"g(#)., 43. l!-'un* o* = ", I + tan.r (A) log (cos x sin x) + c x * cos x) + c ,,(C) log (sin BCA-I05 /2560 (B) log (sin x _ cos x) + c (D) none of these nTa t . 44. l2t x'dx = J, (A); 511 (C) 45. (B) 7 -; @) none of these The value of the 4, ^ integal J_4(ax'+Dx+c)& (A) c onJy (C) a, b and r. (a) I dspsnd5 6n; @) b and c (D) a and c c SEClION-B Let R be the relation on N x N defined by (q b) R G, d), itrad = bc V (a,b) (b) show that R is an equivalence relation: IfA {a,b, c, d}, B = {a, e, g} and e {e, g, m, n, (b). Test the continuity of the : : p} then fird (r)AUc(ts nc) Gi)(AUB)nc Gii)(AnB)uC 2. (a) Evaluate ,* lJ"'*r -"j. | ru u-/, f(x)_l;_n , following function at x : 0, x*o I o , x:o 3. (a) Find the roots of the fbllowing quadratic equation 2){+31 9 x2 +7 2x+47 t2-7 9 _z r'l It tt O) If A=l 2 3| '12)lthetrshowthatA3.-6A2+25A-421=0. L3 4. (a) Find the differential coefficient of (;-1)' *itf, *.pect to x. (b) Find the maxima and minima of the following function2x3 - Zl* + 3Gx-20. !. (a) (b) trvaluate r2x J7.k_2. Evaluate -u li. BCA-105 t2560 *. ,*"'ni I + cos- -r I eNxN,
© Copyright 2025 Paperzz