Solutions To Test 2

Math 151 Test 2
Students Name:___________________
1.
Draw on the grid below a sketch of f ο‚’(x) by using the given graph of f(x).
y = f(x)
y=
2.
Differentiate the following functions.
(a) f(x)
=
(b) f(x)
=
(c) g(x)
=
5π‘₯ 3 βˆ’ 4√π‘₯ +
6
√π‘₯
(π‘₯ 3 βˆ’ 6π‘₯ 2 ) 𝑒 π‘₯
π‘₯ 2 +1
π‘₯ 2 βˆ’1
2
+ π‘₯3 βˆ’ πœ‹ 3
3.
Stone is thrown vertically upwards from the surface of a planet, its height in meters after t
seconds is given by the formula h = t4 – 4t3
(a) What is the velocity and the acceleration of the stone after 3 seconds?
(b) At what time is the stone stationary?
(c) What is the velocity of the stone when it hits the ground?
(d) Is the function speeding up or slowing down at t = 4 seconds.
4.
Differentiate the following functions and simplify as much as possible.
(a) h(x) =
(b) g(x)
𝑠𝑖𝑛π‘₯+π‘π‘œπ‘ π‘₯
𝑠𝑖𝑛π‘₯βˆ’π‘π‘œπ‘ π‘₯
=
sin x + 2cos x – 3sec x + 4tanx + 5csc x – 6cot x
5.
Differentiate the following functions using the chain rule and simplify as much as possible.
(a)
p(x)
(b)
y
=
(c)
y
=
sin(𝑒 π‘₯ + 𝑒 βˆ’π‘₯ )
=
sin5 ( cos(4x + 1) )
4π‘₯
√π‘₯ 2 +1
6.(a)
Use implicit differentiation to differentiate x2y3 – sin y = x4 – 1
6.(b)
Find the equation of the tangent to x2y3 – sin y = x4 – 1 at the point (1,0)
𝑑𝑦
𝑑2 𝑦
7.
Find 𝑑π‘₯ and 𝑑π‘₯ 2 for x3 + y3 = 4 and simplify as much as possible.
8.
Bonus Question (5 extra points) Differentiate f(x) = π‘Žsin(bcos(ctan(𝑒 𝑑π‘₯ )))
Solutions
1.
Draw on the grid below a sketch of f ο‚’(x) by using the given graph of f(x).
y = f(x)
y=
2.
Differentiate the following functions.
6
2
(a) f(x)
=
5π‘₯ 3 βˆ’ 4√π‘₯ +
f(x)
=
5π‘₯ 3 βˆ’ 4π‘₯ 2 + 6π‘₯ βˆ’2 + 2π‘₯ βˆ’3 βˆ’ πœ‹ 3
𝑓′(π‘₯)
=
15π‘₯ 2 βˆ’ 2π‘₯ βˆ’2 βˆ’ 3π‘₯ βˆ’2 βˆ’ 6π‘₯ βˆ’4
𝑓′(π‘₯)
=
15π‘₯ 2 βˆ’
√π‘₯
+ π‘₯3 βˆ’ πœ‹ 3
1
1
1
2
√π‘₯
3
3
6
βˆ’ √π‘₯ 3 βˆ’ π‘₯ 4
=
(π‘₯ 3 βˆ’ 6π‘₯ 2 ) 𝑒 π‘₯
𝑓′(π‘₯)
=
𝑓 β€² (π‘₯)𝑔(π‘₯) + 𝑓(π‘₯)𝑔′(π‘₯)
𝑓′(π‘₯)
=
(3π‘₯ 2 βˆ’ 12π‘₯)𝑒 π‘₯ + (π‘₯ 3 βˆ’ 6π‘₯ 2 ) 𝑒 π‘₯
𝑓′(π‘₯)
=
3π‘₯ 2 𝑒 π‘₯ βˆ’ 12π‘₯𝑒 π‘₯ + π‘₯ 3 𝑒 π‘₯ βˆ’ 6π‘₯ 2 𝑒 π‘₯
𝑓′(π‘₯)
=
π‘₯ 3 𝑒 π‘₯ βˆ’ 3π‘₯ 2 𝑒 π‘₯ βˆ’ 12π‘₯𝑒 π‘₯
𝑓′(π‘₯)
=
π‘₯𝑒 π‘₯ (π‘₯ 2 βˆ’ 3π‘₯ βˆ’ 12)
(b) f(x)
(c) g(x)
=
π‘₯ 2 +1
π‘₯ 2 βˆ’1
𝑓 β€² (π‘₯)𝑔(π‘₯)βˆ’π‘“(π‘₯)𝑔′(π‘₯)
(𝑔(π‘₯))2
𝑔′(π‘₯)
=
𝑔′(π‘₯)
=
𝑔′(π‘₯)
=
2π‘₯ 3 βˆ’2π‘₯βˆ’2π‘₯ 3 βˆ’2π‘₯
(π‘₯ 2 +1)2
𝑔′(π‘₯)
=
βˆ’4π‘₯
(π‘₯ 2 +1)2
2π‘₯(π‘₯ 2 βˆ’1)βˆ’(π‘₯ 2 +1)2π‘₯
(π‘₯ 2 +1)2
3.
Stone is thrown vertically upwards from the surface of a planet, its height in meters after t
seconds is given by the formula h = t4 – 4t3
(a) What is the velocity and the acceleration of the stone after 3 seconds?
=
t4 – 4t3
=
4t3 – 12t2
V(t) =
4t3 – 12t2
V(3)
=
a(t) =
𝑉′(𝑑)
a(t) =
12t2 – 24t
a(3) =
12(3)2 – 24(3)
h
π‘‘β„Ž
𝑑𝑑
4(3)3 – 12(3)2
=
=
0 m/sec
36 m/sec2
(b) At what time is the stone stationary?
Stationary when
V(t) =
0
V(t) =
4t3 – 12t2
4t2 (t– 3)
=
=
0
0
Stationary at t = 0 seconds and t = 3 seconds
(c) What is the velocity of the stone when it hits the ground?
Hits the ground when
h
4
3
t – 4t
t3(t– 4)
=
0
=
=
0
0
It will hit the ground when t = 4 seconds
V(4)
=
4(4)3 – 12(4)2 =
64 m/sec
(d) Is the function speeding up or slowing down at t = 4 seconds.
V(4)
=
4(4)3 – 12(4)2 =
64 m/sec
a(4)
=
12(4)2 – 24(4) =
96 m/sec2
Object is speeding up at t = 4 seconds
4.
Differentiate the following functions and simplify as much as possible.
𝑠𝑖𝑛π‘₯+π‘π‘œπ‘ π‘₯
(a) h(x)
=
h(x)
=
β„Žβ€²(π‘₯)
=
𝑓 β€² (π‘₯)𝑔(π‘₯)βˆ’π‘“(π‘₯)𝑔′(π‘₯)
(𝑔(π‘₯))2
β„Žβ€²(π‘₯)
=
(π‘π‘œπ‘ π‘₯βˆ’π‘ π‘–π‘›π‘₯)(sin π‘₯βˆ’π‘π‘œπ‘ π‘₯)βˆ’(𝑠𝑖𝑛π‘₯+π‘π‘œπ‘ π‘₯)(𝑠𝑖𝑛π‘₯+π‘π‘œπ‘ π‘₯)
(𝑠𝑖𝑛π‘₯βˆ’π‘π‘œπ‘ π‘₯)2
β„Žβ€²(π‘₯)
=
β„Žβ€²(π‘₯)
=
β„Žβ€²(π‘₯)
=
β„Žβ€²(π‘₯)
=
β„Žβ€²(π‘₯)
=
(b) g(x)
𝑔′(π‘₯)
𝑠𝑖𝑛π‘₯βˆ’π‘π‘œπ‘ π‘₯
𝑠𝑖𝑛π‘₯+π‘π‘œπ‘ π‘₯
𝑠𝑖𝑛π‘₯βˆ’π‘π‘œπ‘ π‘₯
π‘π‘œπ‘ π‘₯𝑠𝑖𝑛π‘₯βˆ’π‘π‘œπ‘ 2 π‘₯βˆ’π‘ π‘–π‘›2 π‘₯+𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯π‘π‘œπ‘ π‘₯βˆ’π‘ π‘–π‘›2 π‘₯βˆ’π‘ π‘–π‘›π‘₯π‘π‘œπ‘ π‘₯βˆ’π‘π‘œπ‘ π‘₯𝑠𝑖𝑛π‘₯βˆ’π‘π‘œπ‘ 2 π‘₯
(𝑠𝑖𝑛π‘₯βˆ’π‘π‘œπ‘ π‘₯)(𝑠𝑖𝑛π‘₯βˆ’π‘π‘œπ‘ π‘₯)
βˆ’2𝑠𝑖𝑛2 π‘₯βˆ’2π‘π‘œπ‘ 2 π‘₯
(𝑠𝑖𝑛π‘₯βˆ’π‘π‘œπ‘ π‘₯)(𝑠𝑖𝑛π‘₯βˆ’π‘π‘œπ‘ π‘₯)
βˆ’2
𝑠𝑖𝑛2 π‘₯βˆ’π‘ π‘–π‘›π‘₯π‘π‘œπ‘ π‘₯βˆ’π‘π‘œπ‘ π‘₯𝑠𝑖𝑛π‘₯+π‘π‘œπ‘ 2 π‘₯
βˆ’2
1βˆ’2𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯
βˆ’2
1βˆ’π‘ π‘–π‘›2π‘₯
=
sin x + 2cos x – 3sec x + 4tanx + 5csc x – 6cot x
=
cos x – 2sin x – 3sec x tanx + 4 sec2x – 5csc x cotx + 6 csc2x
5.
Differentiate the following functions and simplify as much as possible.
(a)
p(x)
𝑝′(π‘₯)
𝑝′(π‘₯)
=
=
=
sin(𝑒 π‘₯ + 𝑒 βˆ’π‘₯ )
cos(𝑒 π‘₯ + 𝑒 βˆ’π‘₯ ) βˆ™ (𝑒 π‘₯ βˆ’ 𝑒 βˆ’π‘₯ )
(𝑒 π‘₯ βˆ’ 𝑒 βˆ’π‘₯ )cos(𝑒 π‘₯ + 𝑒 βˆ’π‘₯ )
(b)
y
=
=
sin5 ( cos(4x + 1) )
5 sin4 ( cos(4x + 1)) –sin(4x + 1) 4
=
–20 sin(4x + 1)sin4 ( cos(4x + 1))
𝑑𝑦
𝑑π‘₯
𝑑𝑦
𝑑π‘₯
(c)
y
=
y
=
𝑑𝑦
𝑑π‘₯
𝑑𝑦
𝑑π‘₯
𝑑𝑦
𝑑π‘₯
=
4π‘₯
√π‘₯ 2 +1
4π‘₯
1
(π‘₯ 2 +1)2
𝑓 β€² (π‘₯)𝑔(π‘₯)βˆ’π‘“(π‘₯)𝑔′(π‘₯)
(𝑔(π‘₯))2
1
=
=
2
(π‘₯ 2 +1)
1
1
βˆ’
4(π‘₯ 2 +1)2 βˆ’4π‘₯ 2 (π‘₯2 +1) 2
(π‘₯ 2 +1)
1
𝑑𝑦
𝑑π‘₯
𝑑𝑦
𝑑π‘₯
𝑑𝑦
𝑑π‘₯
=
=
=
1
βˆ’
1
4(π‘₯ 2 +1)2 βˆ’4π‘₯ (π‘₯ 2 +1) 2 2π‘₯
βˆ’
4(π‘₯ 2 +1) 2 (π‘₯ 2 +1βˆ’π‘₯ 2 )
(π‘₯ 2 +1)
4(1)
3
(π‘₯ 2 +1)2
4
√(π‘₯ 2 +1)3
6.(a)
Use implicit differentiation to differentiate x2y3 – sin y = x4 – 1
x2y3 – sin y =
x4 – 1
x2y3 – sin y =
x4 – 1
𝑑𝑦
𝑑𝑦
𝑑𝑦
𝑑𝑦
𝑓 β€² (π‘₯)𝑔(𝑦) + 𝑓(π‘₯)𝑔′(𝑦) 𝑑π‘₯ – cosy𝑑π‘₯
2π‘₯𝑦 3 + π‘₯ 2 3𝑦 2 𝑑π‘₯ – cosy𝑑π‘₯
𝑑𝑦
𝑑𝑦
π‘₯ 2 3𝑦 2 𝑑π‘₯ – cosy𝑑π‘₯
𝑑𝑦
𝑑π‘₯
(3π‘₯ 2 𝑦 2 – cosy )
𝑑𝑦
𝑑π‘₯
6.(b)
=
4x3
=
4x3
=
4x3 – 2xy3
=
4x3 – 2xy3
=
4π‘₯ 3 βˆ’2π‘₯𝑦 3
3π‘₯ 2 𝑦 2 βˆ’π‘π‘œπ‘ π‘¦
2π‘₯(2π‘₯ 2 βˆ’π‘¦ 3 )
= 3π‘₯ 2 𝑦 2 βˆ’π‘π‘œπ‘ π‘¦
Find the equation of the tangent to x2y3 – sin y = x4 – 1 at the point (1,0)
Slope of tangent line at the point (1,0)
𝑑𝑦
𝑑π‘₯
=
=
=
𝑑𝑦
𝑑π‘₯
=
2π‘₯(2π‘₯ 2 βˆ’π‘¦ 3 )
3π‘₯ 2 𝑦 2 βˆ’π‘π‘œπ‘ π‘¦
2(1)(2(12 )βˆ’03 )
0βˆ’cos(0)
4βˆ’0
0βˆ’1
–4
Equation of the Tangent line at the point (1,0) with a slope of – 2
𝑦 βˆ’ 𝑦1 =
π‘š(π‘₯ βˆ’ π‘₯1 )
y–0
=
βˆ’4(π‘₯ βˆ’ 1)
=
– 4x + 4
y
7.
𝑑2 𝑦
𝑑𝑦
Find 𝑑π‘₯ and 𝑑π‘₯ 2 for x3 + y3 = 4 and simplify as much as possible.
x3 + y3 =
𝑑𝑦
3x2 + 3y2𝑑π‘₯ =
4
0
3y2𝑑π‘₯
– 3x2
𝑑𝑦
=
𝑑𝑦
=
𝑑π‘₯
𝑑𝑦
=
𝑑π‘₯
𝑑2 𝑦
=
𝑑π‘₯ 2
=
=
βˆ’3π‘₯ 2
3𝑦 2
βˆ’π‘₯ 2
𝑦2
𝑓 β€² π‘”βˆ’π‘“π‘”β€²
𝑔2
βˆ’2π‘₯𝑦 2 βˆ’(βˆ’π‘₯ 2 )2𝑦
(𝑦 2 )2
βˆ’2π‘₯𝑦 2 +2𝑦π‘₯ 2
𝑦4
𝑑𝑦
𝑑π‘₯
𝑑𝑦
𝑑π‘₯
βˆ’π‘₯2
=
βˆ’2π‘₯𝑦 2 +2𝑦π‘₯ 2 2
𝑦
𝑦4
βˆ’2π‘₯𝑦 2 βˆ’
=
𝑦4
βˆ’2π‘₯𝑦 2 βˆ’
=
=
=
=
𝑑2 𝑦
𝑑π‘₯ 2
8.
=
2π‘₯4
𝑦
2π‘₯4
𝑦
𝑦4
𝑦
𝑦
βˆ’2π‘₯𝑦 3 βˆ’2π‘₯ 4
𝑦5
βˆ’2π‘₯(𝑦 3 +π‘₯ 3 )
𝑦5
βˆ’2π‘₯(4)
𝑦5
βˆ’8π‘₯
𝑦5
Bonus Question (5 extra points) Differentiate f(x) = π‘Žsin(bcos(ctan(𝑒 𝑑π‘₯ )))
𝑓′(π‘₯)
𝑓′(π‘₯)
=
=
π‘Ž cos(bcos(𝑐 tan(𝑒 𝑑π‘₯ ))) βˆ™ βˆ’π‘sin(ctan(𝑒 𝑑π‘₯ )) βˆ™ 𝑐𝑠𝑒𝑐 2 (𝑒 𝑑π‘₯ ) βˆ™ 𝑒 𝑑π‘₯ βˆ™ 𝑑
βˆ’π‘Žπ‘π‘π‘‘ 𝑒 𝑑π‘₯ 𝑠𝑒𝑐 2 (𝑒 𝑑π‘₯ )sin(𝑐 tan(𝑒 𝑑π‘₯ ))cos(𝑏 cos(ctan(𝑒 𝑑π‘₯ )))