H*Edgeworth expansion for Stirling numbers of the first kind We use the expansion and the notation from the paper "General Edgeworth expansions with applications to profiles of random trees" by Zakhar Kabluchko, Alexander Marynych, Henning Sulzbach available at http:arxiv.orgabs1606.03920 *L In[4]:= Out[4]= Out[5]= Out[6]= H*Parameters: phiHbetaL = Exp@betaD-1, LogW@betaD = LogGamma@thetaD-LogGamma@theta*Exp@betaDD, kappa@@jDD = j-th derivative of phiHbetaL=Exp@betaD-1 at beta=0, chi@@jDD = j-th derivative of LogW at beta=0, sigma@@jDD = 1 is ignored everywhere. *L kappa = Table@1, 8n, 1, 5<D LogW@beta_D = LogGamma@thetaD - LogGamma@theta * Exp@betaDD chi = List@D@LogW@xD, xD . x ® 0, D@D@LogW@xD, xD, xD . x ® 0, D@D@D@LogW@xD, xD, xD, xD . x ® 0D 81, 1, 1, 1, 1< LogGamma@thetaD - LogGamma@ãbeta thetaD 9- theta PolyGamma@0, thetaD, - theta PolyGamma@0, thetaD - theta2 PolyGamma@1, thetaD, - theta PolyGamma@0, thetaD 3 theta2 PolyGamma@1, thetaD - theta3 PolyGamma@2, thetaD= In[7]:= H*Differential operators D_1,D_2,D_3. Here D stays for sigma^H-1L ddx *L D1 = kappa@@3DD 6 * D ^ 3 + chi@@1DD * D ^ 1 D2 = kappa@@4DD 12 * D ^ 4 + chi@@2DD * D ^ 2 D3 = kappa@@5DD 20 * D ^ 5 + chi@@3DD * D ^ 3 D3 Out[7]= - D theta PolyGamma@0, thetaD 6 D4 Out[8]= 12 D5 Out[9]= 20 + D2 I- theta PolyGamma@0, thetaD - theta2 PolyGamma@1, thetaDM + D3 I- theta PolyGamma@0, thetaD - 3 theta2 PolyGamma@1, thetaD - theta3 PolyGamma@2, thetaDM 2 stirling.nb In[10]:= H* Bell polynomials are B_0=1, B_1Hz_1L = z_1, B_2Hz_1,z_2L = z_1^2 + z_2, B_3Hz_1,z_2,z_3L = z_1^3 + 3z_1z_2 + z_3 *L H* Probabilist Hermite polynomials are given by He_pHxL = 2^H-p2L*HermiteH@p, xSqrt@2DD To check this, use: Table@Simplify@2^H-p2L*HermiteH@p, xSqrt@2DDD, 8p,0,6<D *L H*Terms in the Edgeworth expansion of the Stirling numbers are denoted by G_0HxL, G_1HxL,...*L H0 = 1; In[11]:= H1@x_D = Simplify@ HExpand@D1D . D ^ p_ -> 2 ^ H- p 2L * HermiteH@p, x Sqrt@2DDL . D -> 2 ^ H- 1 2L * HermiteH@1, x Sqrt@2DDD x I- 3 + x2 - 6 theta PolyGamma@0, thetaDM 1 Out[11]= 6 In[27]:= A11 = Simplify@Coefficient@H1@xD, xDD A12 = Simplify@Coefficient@H1@xD, x ^ 3DD 1 Out[27]= - - theta PolyGamma@0, thetaD 2 1 Out[28]= 6 In[12]:= H2@x_D = Simplify@ 1 H2 !L * Expand@D1 ^ 2 + D2D . D ^ p_ -> 2 ^ H- p 2L * HermiteH@p, x Sqrt@2DDD 1 Out[12]= 72 In[32]:= I- 6 + 27 x2 - 12 x4 + x6 - 12 theta x2 I- 3 + x2 M PolyGamma@0, thetaD + 36 theta2 I- 1 + x2 M PolyGamma@0, thetaD2 - 36 theta2 I- 1 + x2 M PolyGamma@1, thetaDM A21 = Simplify@H2@0DD A22 = Simplify@Coefficient@H2@xD, x ^ 2DD 1 Out[32]= 12 1 Out[33]= 8 I- 1 - 6 theta2 PolyGamma@0, thetaD2 + 6 theta2 PolyGamma@1, thetaDM I3 + 4 theta PolyGamma@0, thetaD + 4 theta2 PolyGamma@0, thetaD2 - 4 theta2 PolyGamma@1, thetaDM stirling.nb In[15]:= H3@x_D = Simplify@1 H3 !L * Expand@D1 ^ 3 + 3 D1 * D2 + D3D . D ^ p_ -> 2 ^ H- p 2L * HermiteH@p, x Sqrt@2DDD 1 Out[15]= 6480 x I810 - 2115 x2 + 999 x4 - 135 x6 + 5 x8 + 540 theta2 I- 3 - 4 x2 + x4 M PolyGamma@0, thetaD2 1080 theta3 I- 3 + x2 M PolyGamma@0, thetaD3 - 540 theta2 I- 3 - 4 x2 + x4 M PolyGamma@1, thetaD + 90 theta PolyGamma@0, thetaD I6 - 27 x2 + 12 x4 - x6 + 36 theta2 I- 3 + x2 M PolyGamma@1, thetaDM + 3240 theta3 PolyGamma@2, thetaD - 1080 theta3 x2 PolyGamma@2, thetaDM In[34]:= A31 = Simplify@Coefficient@H3@xD, xDD 1 Out[34]= 24 I3 - 6 theta2 PolyGamma@0, thetaD2 + 12 theta3 PolyGamma@0, thetaD3 + 6 theta2 PolyGamma@1, thetaD + PolyGamma@0, thetaD I2 theta - 36 theta3 PolyGamma@1, thetaDM + 12 theta3 PolyGamma@2, thetaDM H* The first three terms in the expansion for x = aSqrt@wD. The term H4w^2 = constantw^2 + oH1w^2L is ignored because the constant does not depend on a. Error: oH1w^2L *L Series@Exp@- t ^ 2 2D, 8t, 0, 4<D t2 Out[14]= 1- t4 + 2 8 + O@tD5 3 4 stirling.nb In[16]:= A = H1 + H1@a Sqrt@wDD Sqrt@wD + H2@a Sqrt@wDD w + H3@a Sqrt@wDD w ^ H3 2LL * H1 - a ^ 2 H2 wL + 1 8 * a ^ 4 w ^ 2L; Collect@Coefficient@A, 1 wD, aD Collect@Coefficient@A, 1 w ^ H1 2LD, aD Collect@Coefficient@A, 1 w ^ H3 2LD, aD Collect@Coefficient@A, 1 w ^ 2D, aD a2 1 Out[17]= - - 12 1 - 2 theta2 PolyGamma@0, thetaD2 + 2 1 a - 1 - theta PolyGamma@0, thetaD + 2 Out[18]= 0 Out[19]= 0 a4 + a3 Out[20]= 8 a2 a In[21]:= theta2 PolyGamma@1, thetaD 2 5 1 + theta PolyGamma@0, thetaD + 12 2 5 1 3 + theta PolyGamma@0, thetaD + theta2 PolyGamma@0, thetaD2 12 2 4 3 theta2 PolyGamma@1, thetaD + 4 1 1 1 + theta PolyGamma@0, thetaD - theta2 PolyGamma@0, thetaD2 + 8 12 4 1 1 3 theta3 PolyGamma@0, thetaD3 + theta2 PolyGamma@1, thetaD - theta3 2 4 2 1 PolyGamma@0, thetaD PolyGamma@1, thetaD + theta3 PolyGamma@2, thetaD 2 H*Here we insert a = gam + chi@@1DD-12, where gam is the new variable*L Poly@gam_D = Simplify@Coefficient@A, 1 w ^ 2D . a ® gam + chi@@1DD - 1 2D H- 1 + 2 gam - 2 theta PolyGamma@0, thetaDL 384 I1 + 18 gam + 44 gam2 + 24 gam3 + 4 H- 19 + 6 gamL theta2 PolyGamma@0, thetaD2 + 1 Out[21]= 24 theta3 PolyGamma@0, thetaD3 - 24 H- 5 + 6 gamL theta2 PolyGamma@1, thetaD 2 theta PolyGamma@0, thetaD I13 + 44 gam - 12 gam2 + 72 theta2 PolyGamma@1, thetaDM + 96 theta3 PolyGamma@2, thetaDM In[22]:= H* Now we can compute the quantity denoted by s^* HthetaL in the paper "Asymptotic expansions for the Ewens distribution and the Stirling numbers of the first kind" *L Simplify@Poly@1 2D - Poly@- 1 2DD 1 Out[22]= 2 theta2 H2 PolyGamma@1, thetaD + theta PolyGamma@2, thetaDL stirling.nb In[24]:= H*The resulting expression is positive*L Plot@Poly@1 2D - Poly@- 1 2D, 8theta, 0, 1<D 0.4 0.3 Out[24]= 0.2 0.1 0.2 0.4 0.6 5
© Copyright 2026 Paperzz