PreCalculus Class Notes P3 Polynomials: End Behavior, Number/Types of Roots, Concavity End Behavior of Polynomial Functions Let f be a polynomial function with leading coefficient a and degree n. f(x) = anxn + … + a2x2 + a1x + a0, anxn is the dominant (leading) term and determines the end behavior of the polynomial an > 0 an < 0 n≥1 odd Ends go in opposite directions n≥2 even Ends go in same direction Positive side goes up Positive side goes down Types of Roots y y 2 y = x−2 Crossing Root x y 2 x 2 y 2 x 3 y 2 x 4 2 x 5 y = ( x − 2) y = ( x − 2) y = ( x − 2) y = ( x − 2) Tangent Crossing Tangent Crossing Double root Triple root Multiplicity of 4 Multiplicity of 5 Multiplicity of 2 Multiplicity of 3 Concavity Describes how the curve is changing Holds water Concave up Dumps water Concave down Point of inflection Change in concavity y y 2 y 2 x 2 x 2 y = x−2 y = ( x − 2) Constant Concave up y x 3 y = ( x − 2) Concave down then concave up POI y 2 2 x y = ( x − 2) 4 x 5 y = ( x − 2) Concave down then concave up POI Concave up Characteristics of Polynomials: Standard Form versus Factored Form Standard Form Equation Location of Roots Type of roots y-intercept Leading term End behavior 4 3 2 y = x − 3 x − 17 x + 39 x − 20 Factored Form y = ( x − 5 )( x + 4 )( x − 1) 2 Example: y = ( 2 x − 1)( 3 x + 2 )( 2 − x ) x 2 Location and multiplicity of roots Graphical description of root (crossing or tangent) y-intercept Leading term End behavior Sketch graph
© Copyright 2026 Paperzz