Substituent Effects in the Noncovalent Bonding of SO2 to Molecules

ELECTRONIC SUPPLEMENTARY INFORMATION
Substituent Effects in the Noncovalent Bonding of SO2 to
Molecules containing a Carbonyl Group.
The Dominating Role of the Chalcogen Bond
†, ‡
Luis Miguel Azofra
‡,
and Steve Scheiner *
†
Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006, Madrid, Spain
‡
Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-
0300, USA
*Author to whom correspondence should be addressed.
Fax: (+1) 435-797-3390
E-mail: [email protected]
Figure S1. MEP for the monomers
Figure S2. Minima for the HCOCH3:SO2 (1) complexes
Figure S3. Minima for the CH3COCH3:SO2 (2) complexes
Figure S4. Minima for the HOCOCH3:SO2 (3) complexes
Figure S5. Minima for the CH3OCOCH3:SO2 (4) complexes
Figure S6. Minima for the H2NCOCH3:SO2 (5) complexes
Figure S7. Minima for the (CH3)2NCOCH3:SO2 (6) complexes
Figure S8. Minima for the CH2CHCOCH3:SO2 (7) complexes
Figure S9. Minima for the FCOCH3:SO2 (8) complexes
Figure S10. Minima for the ClCOCH3:SO2 (9) complexes
Figure S11. Minima for the BrCOCH3:SO2 (10) complexes
Figure S12. Minima for the CH3COOCOCH3:SO2 (11) complexes
Figure S13. Minima for the CH3CONHCOCH3:SO2 (12) complexes
Table S1. NBO analysis for the weak interactions
S1
Page
S2
S3
S3
S4
S5
S6
S7
S8
S8
S9
S10
S10
S11
S12
Figure S1. Molecular Electrostatic Potential (MEP) for the monomers: carbonyl
compounds at the MP2/aug-cc-pVDZ computational level. Red and blue regions
indicate most negative and positive regions, respectively, varying between
–0.10 and +0.10 au. Contours illustrated on surface corresponding to 1.5 times van der
Waals radii.
S2
Figure S2. Structure of the heterodimer HCOCH3:SO2 (1) complexes at MP2/aug-ccpVDZ computational level. Broken blue lines link atoms which present interatomic
AIM BCPs, with interatomic distances in Å. Eint + BSSE at MP2/aug-cc-pVTZ
computational level (single point) in kcal/mol.
1a
C1
–
1b
C1
–5.03
Figure S3. Structure of the heterodimer CH3COCH3:SO2 (2) complexes at MP2/aug-ccpVDZ computational level. Broken blue lines link atoms which present interatomic
AIM BCPs, with interatomic distances in Å. Eint + BSSE at MP2/aug-cc-pVTZ
computational level (single point) in kcal/mol.
2a
C1
–5.77
2b
C2v
S3
–2.19
Figure S4. Structure of the heterodimer HOCOCH3:SO2 (3) complexes at MP2/aug-ccpVDZ computational level. Broken blue lines link atoms which present interatomic
AIM BCPs, with interatomic distances in Å. Eint + BSSE at MP2/aug-cc-pVTZ
computational level (single point) in kcal/mol.
3a
C1
–6.46
3d
C1
–3.38
3b
C1
S4
–5.39
3c
Cs
–3.61
Figure S5. Structure of the heterodimer CH3OCOCH3:SO2 (4) complexes at MP2/augcc-pVDZ computational level. Broken blue lines link atoms which present interatomic
AIM BCPs, with interatomic distances in Å. Eint + BSSE at MP2/aug-cc-pVTZ
computational level (single point) in kcal/mol.
4a
Cs
–5.68
4b
Cs
–5.91
4c
C1
–5.43
4d
C1
–4.27
4e
Cs
–3.99
4f
C1
–3.70
S5
Figure S6. Structure of the heterodimer H2NCOCH3:SO2 (5) complexes at MP2/aug-ccpVDZ computational level. Broken blue lines link atoms which present interatomic
AIM BCPs, with interatomic distances in Å. Eint + BSSE at MP2/aug-cc-pVTZ
computational level (single point) in kcal/mol.
5a
C1
–8.14
5b
Cs
–7.19
5c
C1
–3.26
5d
C1
–3.18
5e
C1
–2.73
5f
Cs
–3.06
S6
Figure S7. Structure of the heterodimer (CH3)2NCOCH3:SO2 (6) complexes at
MP2/aug-cc-pVDZ computational level. Broken blue lines link atoms which present
interatomic AIM BCPs, with interatomic distances in Å. Eint + BSSE at MP2/aug-ccpVTZ computational level (single point) in kcal/mol.
6a
C1
–8.55
6b
C1
–8.46
6d
C1
–6.77
6e
C1
–2.18
S7
6c
C1
–8.09
Figure S8. Structure of the heterodimer CH2CHCOCH3:SO2 (7) complexes at
MP2/aug-cc-pVDZ computational level. Broken blue lines link atoms which present
interatomic AIM BCPs, with interatomic distances in Å. Eint + BSSE at MP2/aug-ccpVTZ computational level (single point) in kcal/mol.
7a
C1
–5.90
7b
C1
–5.57
7d
C1
–3.16
7e
Cs
–0.76
7c
C1
–4.54
Figure S9. Structure of the heterodimer FCOCH3:SO2 (8) complexes at MP2/aug-ccpVDZ computational level. Broken blue lines link atoms which present interatomic
AIM BCPs, with interatomic distances in Å. Eint + BSSE at MP2/aug-cc-pVTZ
computational level (single point) in kcal/mol.
8a
C1
–4.34
8d
Cs
–3.55
8b
C1
S8
–3.49
8c
C1
–3.32
Figure S10. Structure of the heterodimer ClCOCH3:SO2 (9) complexes at MP2/aug-ccpVDZ computational level. Broken blue lines link atoms which present interatomic
AIM BCPs, with interatomic distances in Å. Eint + BSSE at MP2/aug-cc-pVTZ
computational level (single point) in kcal/mol.
9a
C1
–3.82
9d
Cs
–3.79
9b
C1
S9
–4.12
9c
C1
–3.90
Figure S11. Structure of the heterodimer BrCOCH3:SO2 (10) complexes at MP2/augcc-pVDZ computational level. Broken blue lines link atoms which present interatomic
AIM BCPs, with interatomic distances in Å. Eint + BSSE at MP2/aug-cc-pVTZ
computational level (single point) in kcal/mol.
10a
C1
–4.24
10b
C1
–4.05
10d
Cs
–4.07
10e
Cs
–1.67
10c
C1
–3.98
Figure S12. Structure of the heterodimer CH3COOCOCH3:SO2 (11) complexes at
MP2/aug-cc-pVDZ computational level. Broken blue lines link atoms which present
interatomic AIM BCPs, with interatomic distances in Å. Eint + BSSE at MP2/aug-ccpVTZ computational level (single point) in kcal/mol.
11a
C1
–6.56
11b
C1
–6.10
11d
C1
–4.93
11e
C1
–3.60
S10
11c
C1
–5.79
Figure S13. Structure of the heterodimer CH3CONHCOCH3:SO2 (12) complexes at
MP2/aug-cc-pVDZ computational level. Broken blue lines link atoms which present
interatomic AIM BCPs, with interatomic distances in Å. Eint + BSSE at MP2/aug-ccpVTZ computational level (single point) in kcal/mol.
12a
C1
–8.05
12b
C1
S11
–6.52
12c
C1
–4.32
Table S1. Condensed second-order perturbation NBO energy, E(2) in kcal/mol for the
heterodimers at B97XD/aug-cc-pVDZ computational level for intermolecular
donor/acceptor interactions.
Comp.
1a
1b
2a
3a
3b
3c
3d
4a
4b
4c
4d
4e
4f
5a
5b
5c
5d
5e
5f
6a
6b
6c
6d
D./A.
sol./SO2
SO2/sol.
sol./SO2
SO2/sol.
sol./SO2
SO2/sol.
sol./SO2
SO2/sol.
sol./SO2
SO2/sol.
sol./SO2
sol./SO2
SO2/sol.
sol./SO2
SO2/sol.
SO2/sol.
sol./SO2
sol./SO2
sol./SO2
SO2/sol.
SO2/sol.
sol./SO2
SO2/sol.
sol./SO2
sol./SO2
SO2/sol.
sol./SO2
SO2/sol.
sol./SO2
SO2/sol.
SO2/sol.
SO2/sol.
SO2/sol.
SO2/sol.
SO2/sol.
sol./SO2
sol./SO2
SO2/sol.
sol./SO2
sol./SO2
sol./SO2
SO2/sol.
sol./SO2
sol./SO2
sol./SO2
SO2/sol.
sol./SO2
sol./SO2
Type
Olp*(SO)
Olp*(CH)
Olp*(SO)
Olp*(CH)
Olp*(SO)
(SO)*(CH)
Olp*(SO)
Olp*(CH)
Olp*(SO)
(SO)*(CH)
Olp*(SO)
Olp*(SO)
Olp*(CH)
Olp*(SO)
Olp*(CH)
(SO)*(CH)
Olp*(SO)
Olp*(SO)
(CO)*(SO)
Olp*(CH)
(SO)*(CH)
Olp*(SO)
Olp*(CH)
Olp*(SO)
Olp*(SO)
Olp*(CH)
Olp*(SO)
Olp*(NH)
Olp*(SO)
Olp*(CH)
Olp*(NH)
Olp*(NH)
Olp*(CH)
Olp*(NH)
Olp*(NH)
Nlp*(SO)
Nlp*(SO)
Olp*(CH)
Olp*(SO)
Nlp*(SO)
(OC)*(SO)
Olp*(OC)
Olp*(SO)
Nlp*(SO)
(OC)*(SO)
Olp*(CO)
Nlp*(SO)
Nlp*(SO)
E(2)
11.90
2.60
5.97
1.06
8.00
0.59
6.89
10.70
7.14
0.51
1.70
2.55
1.96
5.63
0.71
0.51
10.72
0.73
2.30
1.28
0.69
5.19
0.52
1.94
5.35
1.47
16.09
7.35
15.83
0.54
5.48
5.88
1.64
4.23
5.03
1.03
22.20
1.55
2.39
0.69
7.88
1.92
0.87
0.91
8.92
1.43
2.95
12.50
Comp.
7b
7c
7d
7e
8a
8b
8c
9a
9b
9c
9d
10a
10b
10c
10d
10e
11a
11b
11c
11d
11e
12a
12b
S12
D./A.
sol./SO2
sol./SO2
SO2/sol.
sol./SO2
SO2/sol.
sol./SO2
SO2/sol.
SO2/sol.
SO2/sol.
sol./SO2
SO2/sol.
SO2/sol.
sol./SO2
SO2/sol.
SO2/sol.
SO2/sol.
sol./SO2
SO2/sol.
sol./SO2
SO2/sol.
SO2/sol.
sol./SO2
SO2/sol.
sol./SO2
SO2/sol.
SO2/sol.
SO2/sol.
sol./SO2
SO2/sol.
sol./SO2
SO2/sol.
sol./SO2
sol./SO2
SO2/sol.
sol./SO2
sol./SO2
SO2/sol.
sol./SO2
SO2/sol.
sol./SO2
sol./SO2
SO2/sol.
sol./SO2
SO2/sol.
sol./SO2
sol./SO2
SO2/sol.
sol./SO2
Type
Olp*(SO)
(CO)*(SO)
Olp*(CH)
(CO)*(SO)
Olp*(CO)
(CC)*(SO)
(SO)*(CO)
Slp*(CH)
Olp*(CH)
Olp*(SO)
Olp*(CH)
Olp*(CO)
Flp*(SO)
Olp*(CH)
Olp*(CO)
Olp*(CO)
Olp*(SO)
Olp*(CH)
Cllp*(SO)
Olp*(CH)
(SO)*(CO)
Cllp*(SO)
Olp*(CH)
Brlp*(SO)
Olp*(CH)
(SO)*(CO)
Olp*(CO)
Olp*(SO)
Olp*(CH)
Brlp*(SO)
Olp*(CH)
Brlp*(SO)
Olp*(SO)
Olp*(CO)
Olp*(SO)
Olp*(SO)
Olp*(CO)
Olp*(SO)
Olp*(CH)
Olp*(SO)
Olp*(SO)
Olp*(CH)
Olp*(SO)
Olp*(CH)
Olp*(SO)
(CO)*(SO)
Olp*(CO)
Olp*(SO)
E(2)
7.27
0.51
1.18
1.75
1.67
2.73
0.61
0.69
1.25
4.09
0.76
1.93
0.53
0.82
0.94
1.91
2.39
0.66
2.20
0.99
0.98
2.59
0.66
3.00
1.50
1.03
1.48
0.56
0.60
3.69
0.74
0.55
5.34
2.29
1.55
0.86
1.75
2.37
0.77
2.76
1.08
1.70
2.81
0.92
3.94
1.71
1.95
9.86
6e
7a
SO2/sol.
SO2/sol.
SO2/sol.
SO2/sol.
sol./SO2
sol./SO2
SO2/sol.
Olp*(CH1)
Olp*(CH2)
(SO)*(CO)
Olp*(CH)
Olp*(SO)
(CO)*(SO)
Olp*(CO)
0.62
0.50
0.83
1.99
3.15
3.03
0.80
12c
S13
SO2/sol.
SO2/sol.
Olp*(CH)
Olp*(NH)
0.65
8.83