Factor Practice #2 Name___________________ Factoring Steps: 1) Write in descending order. A polynomial that does not 2) Factor out GCF (including -1) factor is known as prime 3) Determine number of terms: a) Binomial -> Difference of two squares -> (a2 – b2) => (a-b)(a+b) 1. x2 – 25 (x+5)(x-5) 2. x2 – 81 (x+9)(x-9) 3. –1 + x2 (x-1)(x+1) 4. –x3 - 4x -x(x2 + 4) 5. -2x3 + 2x -2x(x+1)(x-1) 6. 25x2 – 9 (5x+3)(5x-3) 7. 36a − 9 9(4a – 1) 8. 400 − 36v2 -4(3v+10)(3v-10) 9. 10p3 − 1960p 10p(p+14)(p-14) 10. 81v4 − 900v2 9v2(3v-10)(3v+10) 11. -12x2 - 3x3 -3x2(x+4) 12. 49x2 + 100 Prime 13. 2x6 + 20x4 - 4x5 2x4(x2 – 2x + 10) 14. 28v3 + 16v2 − 21v − 12 Prime 15. 81a2 – 9b2 9(3a-b)(3a+b) 16. x2 – 9 (x-3)(x+3) 17. 16x2 - 9 (4x-3)(4x+3) 18. 49x2 - 64 (7x-8)(7x+8) 19. 13x2 - 130x 13x(x-10) 20. x2 – 121 (x-11)(x+11) 21. 4m2 − 25 (2m-5)(2m+5) 22. k4 − 36 (k2-6)(k2+6) 23. 1 − r2 -(r-1)(r+1) 24. 343b2 − 7b4 -7b2(b+7)(b-7) 25. n8 − 256 (n4+16)(n2+4)(n+2)(n-2) 26. 49n2 − 56n + 16 Prime 27. -6x3 + 8x -2x(3x2 - 4) 28. -33x2 - 330x -33x(x+10) 29. 54n2 − 105n + 63n3 − 90 3(21n3 + 18n2 – 35n – 30) 30. -81b2 – 9a2 -9(a2+9b2) Factor Practice #3 Factoring Steps: 1) Write in descending order 2) Factor out GCF (including –1) 3) Determine number of terms: a) Binomial -> Diff. of 2 squares b) 4 or more terms -> Grouping Name___________________ A polynomial that does not factor is known as ________ 1. 8r3 − 64r2 + r − 8 2. − 5 + 12x3 − 30x + 2x2 ( 8r2 + 1 ) ( r − 8 ) 3. 25v3 + 5v2 + 30v + 6 ( 2x2 − 5 ) ( 6x + 1 ) 4. 4v3 − 12v2 − 5v + 15 ( 5v2 + 6 ) ( 5v + 1 ) 5. −56p − 35 + 24p3 + 15p2 ( 4v2 − 5 ) ( v − 3 ) 6. 63n3 + 54n2 − 105n − 90 ( 3p2 − 7 ) ( 8p + 5 ) 7. 6 + 30v + 5v2 + 25v3 3( 3n2 − 5 ) ( 7n + 6 ) 8. 4 xy + 6 − x − 24 y ( 5v2 + 6 ) ( 5v + 1 ) 9. 12x2u + 3x2v + 28yu + 7yv (x −6)(4y −1) 10. 28xy + 25 + 35x + 20y ( 3x2 + 7y ) ( 4u + v) 11. 25a8 - 100b4 ( 7x + 5 ) ( 4y + 5 ) 12. 21y6z – 49y5z – 14y7z 25( a4 – 2b2 )( a4 + 2b2) 13. 15a2z − 12a2c + 45xz − 36xc -7y5z( 2y2 – 3y + 7) 14. -72a3 + 36a5 + 36a2 – 18a4 -3( a2 + 3x ) ( 4c − 5z ) 18a2( a2 – 2 )( 2a – 1 ) Factor Practice #4 Name___________________ Factoring Steps: 1) Write in descending order A polynomial that does not 2) Factor out GCF (neg 1) factor is known as prime 3) Determine number of terms: a) Binomial -> Diff. of 2 squares b) 4 or more terms -> Grouping c) Trinomial -> Leading Coefficient of 1: Check for perfect square trinomial -> a2 2ab + b2 Product/Sum: x2 + bx + c = ( x + )( x + ) x2 - bx + c = ( x - )( x - ) x2 bx - c = ( x + )( x - ) Leading Coefficient other than 1: 1. x2 - 5x - 84 2. x2 - 16x + 64 3. x2 + 13x + 36 (x + 7)(x - 12) 4. x2 - 10x + 25 (x - 8)2 5. x2 - 13x + 12 (x + 9)(x + 4) 6. x2 + 4x - 32 (x - 5)2 7. x2 - 8x + 16 (x - 1)(x - 12) 8. 2x + x2 - 8 (x - 4)(x + 8) 9. -20x + x2 + 100 (x - 4)2 10. 36 - 12x + x2 (x - 2)(x + 4) 11. x2 + 84 - 19x (x - 10)2 12. 9x + x2 + 8 (x - 6)2 13. 24 + x2 - 10x (x - 12)(x - 7) 14. – 8 + x2 - 7x (x + 8)(x + 1) 15. – 10 - 9x + x2 (x - 4)(x - 6) 16. −44n + 40 + 4n2 (x - 8)(x + 1) 17. -4n2 - 16n + 48 (x - 10)(x + 1) 18. -32b - 2b2 - 128 4(n − 10)(n − 1) 19. 3m2 − 72 + 6m -4(n − 2)(n + 6) 20. 200 − 65k + 5k2 -2(b + 8)2 21. 2n2 − 108 + 6n 3(m + 6)(m − 4) 5(k − 5)(k − 8) 2(n + 9)(n − 6) 22. 10n2 + 250 + 100n 23. 63m – 72 + 18m2 10(n + 5)2 24. –x2y2 – 25x2 + 4y2 + 100 9(2m2 + 7m – 8) 25. 256 – z20 -(x-2)(x+2)(y2 + 25) -(z10+16)(z5+4)(z5-4) 26. 20m – 40n -8n2 + 4mn 27. t2 + 20t – 6t - 150 + t2 + 30 4(m-2n)(n+5) 2(t-5)(t+12) Factor Practice #5 Name___________________ Factoring Steps: 1) Write in descending order A polynomial that does not 2) Factor out GCF (neg 1) factor is known as prime 3) Determine number of terms: a) Binomial -> Diff. of 2 squares b) 4 or more terms -> Grouping c) Trinomial -> Leading Coefficient of 1: Check for perfect square trinomial -> a2 2ab + b2 Product/Sum: x2 + bx + c = ( x + )( x + ) x2 - bx + c = ( x - )( x - ) x2 bx - c = ( x + )( x - ) Leading Coefficient other than 1: Check for perfect square trinomial ax2 bx c 1. 2v2 + 11v + 5 2. 49x2 - 42x + 9 (2v + 1)(v + 5) 3. −6 + 15n2 − 27n (7x - 3)2 4. −15n + 4n2 − 25 3(5n + 1)(n − 2) 5. 4n2 + 4 − 17n (n − 5)(4n + 5) 6. 6x2 + 6 + 37x (n − 4)(4n − 1) 7. −12 + 10n + 12n2 (x + 6)(6x + 1) 8. -15n2 – 20 + 40n -5(3n − 2)(n − 2) 2(2n + 3)(3n − 2) 9. -159a - 21a2 - 84 10. 9x4 - 60x2 + 100 (3x2 - 10)2 -3(7a + 4)(a + 7) 11. 7x2 – 175 – x3 + 25x 12. 49x4 + 112x2 + 64 (7x2 + 8)2 -(x - 7)(x + 5)(x – 5)
© Copyright 2026 Paperzz