1 MS121: IT Mathematics — Semester 2 — Tutorial Sheet 5 5.1 Calculate the following indefinite integrals: Z (a) x dx Z (d) 8 1 dx x8 Z (b) Z (e) 5 3x − 6 x 8 Z dx (ex + sin x + cos x) dx (c) (f) Outline Solution x9 x8 dx = +C 9 Z 5 1 1 8 3x − 6 dx = x9 + 5 + C (d) x 3 x Z 1 5 (c) 5x6 − 2x5 − 8x + 5 dx = x7 − x6 − 4x2 + 5x + C 7 3 Z 1 1 (d) dx = − 7 + C 8 x 7x Z (e) (ex + sin x + cos x) dx = ex − cos(x) + sin x + C Z 1 1 1 (f) 1 + + 2 dx = x + ln x − + C x x x Z (a) 5x6 − 2x5 − 8x + 5 dx Z 1 1 1 + + 2 dx x x 2 MS121: IT Mathematics — Semester 2 — Tutorial Sheet 5 5.2 Calculate the following definite integrals: Z 1 t dt Z0 −1 12 7 24w + 4 dw w −2 (a) (d) (b) (c) 2 1 dx 7 x Z1 2 1 2 x+ dx x 1 Z 7 Z (c) (f) 1 t 1 − t2 dt √ Z−1 4 3x − 2 x dx x 1 Outline Solution 1 t8 1 t dt = = 8 0 8 0 Z 2 1 1 2 1 1 63 dx = − 6 = − + = 7 6x 1 384 6 384 1 x 2 1 Z 1 Z 1 t 2t3 t4 1 2 1 1 2 1 2 2 3 t 1 − t dt = t − 2t + t dt = − + = − + − + + = 2 3 4 −1 2 3 4 2 3 4 −1 −1 4 − 3 Z −1 1 12 4 −1 7 8 = 3 + 4 − (768 + ) = −761.5 24w + 4 dw = 3w − 3 w w −2 2 −2 2 3 2 Z 2 Z 2 1 1 x 8 1 1 1 2 x+ x + 2 + 2 dx = = − dx = + 2x − +4− +2−1 = x x 3 x 1 3 2 3 1 1 10 3 √ Z 4 Z 4 h i √ 4 1 1 4 3x − 2 x 3 − 2x− 2 dx = 3x − 2 · 2x 2 = 3x − 4 x 1 = 4 − (−1) = 5 dx = x 1 1 1 Z (a) (b) (c) (d) (e) (f) 1 7 3 MS121: IT Mathematics — Semester 2 — Tutorial Sheet 5 5.3 Use integration by substitution to calculate each of the following integrals: Z Z Z p√ 1 x+4 6 5x7 −2 √ (a) dx (b) x e dx (c) dx x Z 4x ln x Z 2 Z 4 √ x x dx √ x x − 1 dx (d) dx (e) (f) 2 1 + 2x 1 3x + 1 1 0 Outline Solution (a) Substitution: u = ln x ⇒ du 1 1 = ⇒ du = dx dx x x so that Z 1 dx = x ln x 1 dx · ln x x Z 1 du = u = ln u + C Z = ln(ln x) + C (b) Substitution: u = 5x7 − 2 du = 35x6 dx ⇒ ⇒ du = 35x6 dx ⇒ so that Z 6 5x7 −2 x e (c) Substitution: u= √ Z x+4⇒ so that = = = = 7 e5x −2 x6 dx Z 1 u = e du 35 Z 1 = eu du 35 1 u e +C = 35 1 5x7 −2 = e +C 35 dx = du 1 1 1 = x− 2 ⇒ 2du = √ dx dx 2 x Z p√ x+4 √ dx x Z √ u · 2 du Z 1 2 u 2 du 2 3 2 u 2 3 3 4 √ x+4 2 3 1 du = x6 dx 35 4 MS121: IT Mathematics — Semester 2 — Tutorial Sheet 5 (d) Substitution: u = 3x2 + 1 du = 6x dx ⇒ ⇒ ⇒ du = 6xdx 1 du = x dx 6 Change the limits of integration: x=1 ⇒ u = 3x2 + 1 = 4 ⇒ x=4 u = 3x2 + 1 = 49 ⇒ so that 4 Z 1 x dx = 2 3x + 1 = = = = Z (e) 2 x √ 1 x − 1 dx: Let u = x − 1 ⇒ 4 1 (x dx) +1 1 Z 49 1 1 du u 6 4 Z 1 49 1 du 6 4 u 1 [ln u]49 4 6 1 (ln 49 − ln 4) 6 Z 3x2 x = u + 1 and du = dx Change the limits of integration: x=1⇒u=x−1=0 x=2⇒u=x−1=1 so that Z 2 x 1 √ x − 1 dx = Z 1 √ (u + 1) u du 0 Z = 1 3 1 u2 + u2 du 0 = = = 2 5 2 3 u2 + u2 5 3 2 2 + 5 3 16 15 1 0 5 MS121: IT Mathematics — Semester 2 — Tutorial Sheet 5 Z (f) 0 4 √ x dx : 1 + 2x ⇒ Let u = 1 + 2x du = 2 dx ⇒ dx = 1 1 du and x = (u − 1) 2 2 Change the limits of integration: x = 0 ⇒ u = 1 + 2x = 1 x = 4 ⇒ u = 1 + 2x = 9 so that Z 0 4 √ x dx 1 + 2x = = = = = 9 1 (u − 2 √ 1) 1 · du 2 u 1 Z 9 1 1 1 u 2 − u− 2 du 4 1 9 1 1 2 3 u2 − 2 u2 4 3 1 i 1 9 1h 3 u2 − 3 u2 6 1 1 [(27 − 9) − (1 − 3)] 6 10 3 Z = 6 MS121: IT Mathematics — Semester 2 — Tutorial Sheet 5 5.4 Use integration by parts to calculate each of the following integrals: Z (a) Z x ln x dx Z (d) 3 1 Z r3 ln r dr Z x e2x dx (b) (e) (c) x2 + 1 e−x dx 1 (f) tan−1 x dx 0 0 1 x cos 5x dx Z Outline Solution (a) Integration by parts: u = ln(x) ⇒ dv = x dx ⇒ du = 1 dx x 1 v = x2 2 and the formula yields Z Z Z u dv = ln(x) · x dx = uv − v du = = = = Z 1 2 1 2 1 ln(x) · x − x · dx 2 2 x Z 1 1 2 x ln(x) − x dx 2 2 1 2 1 x ln(x) − x2 + C 2 4 1 2 1 x ln(x) − +C 2 2 (b) Integration by parts: ⇒ u=x dv = e2x dx and the formula yields Z Z u dv = du = dx 1 v = e2x 2 ⇒ 2x x·e Z dx = uv − v du Z 1 2x 1 2x = x e − e dx 2 2 1 2x 1 2x = xe − e + C 2 4 Z (c) x cos 5x dx: Integration by parts: u=x dv = cos 5x dx ⇒ ⇒ du = dx 1 v = sin 5x 5 7 MS121: IT Mathematics — Semester 2 — Tutorial Sheet 5 and the formula yields Z Z Z u dv = x cos 5x dx = uv − v du Z 1 1 x sin 5x − sin 5x dx 5 5 1 1 x sin 5x + cos 5x + C 5 25 = = 3 Z r3 ln r dr: Integration by parts: (d) 1 u = ln r ⇒ dv = r3 dr ⇒ and the formula yields Z Z u dv = 3 1 1 Z (e) du = 1 dr r 1 v = r4 4 Z r3 ln r dr = uv − v du 3 Z 3 1 3 1 4 = r ln r − r dr 4 1 4 1 1 1 4 3 81 ln 3 − 0 − r = 4 4 4 1 81 1 = ln 3 − (81 − 1) 4 16 81 ln 3 − 5 = 4 x2 + 1 e−x dx Integration by parts: 0 u = x2 + 1 dv = e and the formula yields Z Z u dv = 1 2 ⇒ −x du = 2x v = −e−x ⇒ −x dx = uv − x +1 e 0 Z v du Z 1 −x 1 2 = − x +1 e + 2x e−x dx 0 0 Z 1 = −2e−1 + 1 + 2 x e−x dx 0 Z Separately, we apply integration by parts to 1 x e−x dx to obtain 0 Z 1 −x xe 0 dx = 1 −x e−x 0 − Z 0 1 1 e−x dx = −e−1 + −e−x 0 = −e−1 − −e−1 + 1 = −2e−1 + 1 Combining both results, we obtain: Z 1 Z −x 2 −1 x + 1 e dx = −2e + 1 + 2 0 0 1 x e−x dx = −2e−1 + 1 + 2 −2e−1 + 1 = −6e−1 + 3 8 MS121: IT Mathematics — Semester 2 — Tutorial Sheet 5 Z (f) 1 tan−1 x dx: Integration by parts: 0 u = tan−1 x ⇒ du = dv = dx ⇒ v=x and the formula yields Z Z u dv = 1 −1 tan 0 x dx = uv − dx 1 + x2 Z v du 1 x dx 2 0 1+x Z 1 x = 1 · tan−1 1 − 0 · tan−1 0 − dx 2 0 1+x Z 1 π x = − dx 2 4 0 1+x = −1 1 · tan x 1 − 0 Z To evaluate this integral, we use substitution: v = 1 + x2 ⇒ dv = 2x dx ⇒ x dx = 1 du 2 and change the limits of integration: x = 0 ⇒ v = 1 + x2 = 1 to obtain Z 0 1 x 1 dx = 2 1+x 2 Z 1 2 and x = 1 ⇒ v = 1 + x2 = 2 2 1 1 1 1 1 dv = ln v = ln 2 − ln1 = ln 2 v 2 2 2 2 1 Combining both results, we obtain Z 1 Z 1 π x π 1 tan−1 x dx = − dx = − ln 2 2 4 1 + x 4 2 0 0 9 MS121: IT Mathematics — Semester 2 — Tutorial Sheet 5 5.5 Find the area of the shaded regions: (a) (b) (c) (d) Outline Solution (a) Z x=4 x=0 (yT − yB ) dx = 4 Z 0 5x − x2 − x dx 4 Z 4x − x2 dx 0 1 3 4 2 = 2x − x 3 0 32 64 − (0) = = 32 − 3 3 = (b) Z x=6 x=0 2 6x − x2 dx 0 1 3 6 2 = 3x − x 3 0 = (108 − 72) − (0) = 36 (c) Z y=1 y=0 6 Z 2x − x − 4x dx = (xR − xL ) dy = Z 1 √ 0 Z 1 y − y2 − 1 √ dy y − y 2 + 1 dy 0 1 2 3 1 3 2 = y − y +y 3 3 0 2 1 4 = − + 1 − (0) = 3 3 3 = 10 MS121: IT Mathematics — Semester 2 — Tutorial Sheet 5 (d) Z y=3 y=0 2y − y 2 2 − y − 4y Z dy = 0 3 −2y 2 + 6y dy 2 2 3 2 = − y + 3y 3 0 = (−18 + 27) − (0) = 9 11 MS121: IT Mathematics — Semester 2 — Tutorial Sheet 5 5.6 In each of the following, sketch the region enclosed by the given curves, decide whether to integrate with respect to x or y and then find the area of the region: (a) y = x, y = x2 2 (b) 4x + y 2 = 12, x = y 2 (c) y = x − x − 2, y = 4 − x , x ∈ [−2, 3] (d) (e) y = x(x − 2)(x − 4), y = 0, x ∈ [0, 4] (f) 3π y = cos(x), y = 0, x ∈ 0, 2 y = sin(x), y = cos(x), x ∈ [0, 2π] Outline Solution (a) y = x, y = x2 : The curves intersect when x = x2 , i.e. when x(x − 1) = 0 ⇒ x = 0 or x = 1: Z 1 x2 x3 − 2 3 0 1 1 1 − = 2 3 6 1 x−x A= 0 2 dx = = (b) 4x + y 2 = 12, x = y: The curves intersect when 4x + x2 = 12, i.e. x2 − 4x − 12 = 0 ⇒ (x + 6)(x − 2) = 0 ⇒ x = −6 or x = 2 With x = −6 or x = 2, we have correspondingly y = −6 or y = 2 and Z 2 1 1 − y 2 + 3 − y dy = − y 2 − y + 3 dy 4 4 −6 −6 2 1 3 1 2 = − y − y + 3y 12 2 −6 2 64 = − − 2 + 6 − (18 − 18 − 18) = 3 3 Z A= 2 (c) The solutions of the equation f (x) = g(x), i.e. x2 − x − 2 = 4 − x2 are x = − 23 and x = 2, so these are the two points of intersection on the graph. 6 4 y f (x) = x2 − x − 2 g(x) = 4 − x2 2 x −3 −2 −1 1 2 3 −2 −4 Notice that f is above g on −2, − 32 , g is above f on − 23 , 2 and f is again above g on [2, 3]. On each of these smaller intervals, we can use the definite integral to calculate the 12 MS121: IT Mathematics — Semester 2 — Tutorial Sheet 5 area between the graphs (without requiring the absolute value formulation): Z = 3 |f (x) − g(x)| dx −2 Z −3 2 −2 Z = − 32 −2 = [f (x) − g(x)] dx + − 32 2 2x − x − 6 dx + 2 3 1 2 x − x − 6x 3 2 − 3 2 −2 2 Z Z [g(x) − f (x)] dx + 3 Z 2 2 2 − 23 − 2x − x − 6 dx + [f (x) − g(x)] dx Z 3 2 2x2 − x − 6 dx 2 3 2 3 1 2 2 3 1 2 + − x − x − 6x + x − x − 6x 3 2 3 2 −3 2 2 466 23 343 100 + + = = 24 24 24 24 3π (d) y = cos(x), y = 0, x ∈ 0, : 2 Z A = 3π 2 0 Z = π 2 |cos(x)| dx 0 π = 3π 2 Z cos(x) dx + π 2 3π 2 π 2 [− cos(x)] dx sin(x)|02 − sin(x)| = (1 − 0) − (−1 − 1) = 3 (e) The curve intersects the x-axis at x = 0, x = 2 and x = 4. 4 f (x) = x3 − 6x2 + 8x 2 1 2 3 4 −2 −4 The total area is the sum of the two areas A1 and A2 where Z 2 A1 = x3 − 6x2 + 8x dx Z0 4 3 2 A2 = x − 6x + 8x dx 2 Area A2 is on the negative side of the x-axis and, without taking absolute values, the definite integral will be a negative number and that is why, in such cases, we regard the area as the 13 MS121: IT Mathematics — Semester 2 — Tutorial Sheet 5 absolute value of the definite integral. We therefore obtain Z 2 A1 = x3 − 6x2 + 8x dx 0 2 x4 3 2 = − 2x + 4x 4 0 = (4 − 16 + 16) − (0) = 4 Also Z 4 A2 = x3 − 6x2 + 8x dx 2 4 x4 − 2x3 + 4x2 = 4 2 = |(64 − 128 + 64) − (4 − 16 + 16)| = |−4| = 4 Therefore, the required area is A = A1 + A2 = 4 + 4 = 8 (f) y = sin(x), y = cos(x), x ∈ [0, 2π]: The region A is shaded in the diagram shown. Between 0 and 2π, the graphs of sine and cosine cross at x = π4 and x = 5π 4 Therefore, Z A = 0 π 4 [cos(x) − sin(x)] dx + π 5π 4 Z π 4 [sin(x) − cos(x)] dx + 5π Z 2π 5π 4 [cos(x) − sin(x)] dx = [sin(x) + cos(x)]04 + [− (cos(x) + sin(x))] π4 + [(sin(x) + cos(x))]2π 5π 4 4 √ √ √ √ √ = 2−1 + 2+ 2 + 1+ 2 =4 2 14 MS121: IT Mathematics — Semester 2 — Tutorial Sheet 5 5.7 Find the area of the plane region lying to the right of the parabola x = y 2 − 12 and to the left of the straight line y = x. Outline Solution Find the intersections of the curves x = y 2 − 12 and y = x: y 2 − 12 = x = y ⇒ y 2 − y − 12 = 0 ⇒ (y − 4)(y + 3) = 0 ⇒ y = 4 or y = −3 Noting that y 2 − 12 ≤ y for −3 ≤ y ≤ 4, the area is Z 4 A = y − y 2 − 12 dy −3 4 Z = −3 y2 y − y 2 + 12 dy y3 − + 12y 2 3 343 6 = = 4 3 Note that the same result could have been obtained by integrating in the x-direction but the integral would have been more complicated: Z −3 Z 4 √ √ √ A = 12 + x − − 12 + x dx + 12 + x − x dx = 2 −12 Z −3 √ −12 −3 Z 4 12 + x dx + −3 √ 12 + x − x dx 15 MS121: IT Mathematics — Semester 2 — Tutorial Sheet 5 5.8 Find the area of the plane region lying: (a) above the x-axis and under the curve y = 3x − x2 ; (b) above the line y = 1 and under the curve y = 5 . x2 +1 Outline Solution (a) We need to find the points where the curve y = 3x − x2 meets the x-axis: 0 = 3x − x2 ⇒ x = 0, x = 3 Hence, the area is given by 3 Z A = 0 = 3x − x2 dx 3x2 x3 − 2 3 3 = 0 (b) The points of intersection of y = 1 and y = 1= 5 x2 + 1 27 27 − 2 3 5 x2 +1 ⇒ − (0 − 0) = 9 2 are obtained as follows: x = ±2 Hence, the area is given by Z 2 5 R = dx − 4 2 −2 x + 1 Z 2 2 5 −1 = 2 dx − 4 = 10 tan x − 4 = 10 tan−1 2 − 4 0 2+1 x 0 JC MS121: IT Mathematics Semester 2 Tutorial Sheet 5 28/01/15
© Copyright 2026 Paperzz