21IndustrialAve UpperSaddleRiver,NJ.07458 P(201)962‐7373 F(201)962‐8353 E‐mail:[email protected] ModelNo.UTG‐4000 283 Veterans Blvd Carlstadt, NJ. 07072 (201) 933-6300 www.phase2plus.com www.phase2plus.com CONTENT 1. GENERAL INTRODUCTION3 1.1 CONSTRUCTION OF THE GAGE........3 1.2 STANDARD CONFIGURATIONS.........3 1.3 OPTIONAL CONFIGURATIONS..........3 1.4 SPECIFICATIONS.............................4 1.5 MAIN FUCTIONS..............................5 2. KEYBOARD FUCTIONS 5 3. MEASURING THE THICKNESS 6 3.1 PRESET THE MATERIAL’S VELOCITY6 3.2 PRESET OTHER SPECIFICATIONS....7 3.3 CALIBRATION.................................8 3.4 DISPLAY MODES.............................9 3.5 ADJUSTING THE SPECIFICATIONS IN A-SCAN MODE ........................................................11 3.6 REAL CASES ANALYSIS................12 4.CARE AND MAINTENANCES 16 4.1 POWER SOURCE INSPECTION......17 4.2.......................................Maintenance 4.3 Service / Support..........................17 APPENDIX: SOUND VELOCITIES OF COMMON MATERIALS 17 1. GENERAL INTRODUCTION Utilizing live A‐scan and time based B‐scan for absolute correctness, this new state of the art thicknessgaugeispackedwithusefulfeaturesallowinguserstobeconfidentofthedisplayedvalueson the most critical of applications. This multi‐functional unit offers everything from basic measurement, ScanwithMin/Maxviewing,GO/NOGOdisplayandAdjustableSoundVelocity.Thisdynamicsonicgauge is designed to measure the thickness of metallic and non‐metallic materials in critical situations that ordinarythicknessgaugescouldn’tdo. TheUTG‐4000willaccuratelydisplayreadingsineitherinchormillimeterafterasimplecalibrationto aknownthicknessorsoundvelocity. DISCLAIMER: TheUTG‐4000isamulit‐functionalthicknessgaugethatallowstheusertremendouscontroloverthefunctionalityandperformance ofthisinstrument.Althoughthisprovidestheuserwithcontrolandversatilityfornumerousapplications,italsorequiresthatthe userbefamiliarwiththefunction,operationandwaveforminterpretationoftheinstrumentaswell. Itisrecommendedthattheuserspendasufficientamountoftimeworkingwiththisinstrumentpriortofielduse. Responsibilityforproperuserestssolelywiththeuseofthisinstrument. 1.1CONSTRUCTIONOFTHEGAGE 1.2STANDARDCONFIGURATION Qty ThicknessGauge 1 5MHzPROBE 1 AABatteries 2 2ozCouplantGel 1 RuggedCarrycase 1 OperationManual 1 1.3OPTIONALACCESSORIES High‐temperatureprobe Castironprobe SmallProbe(6mm) MiniProbe(4mm) Probecable 5‐Stepblock 1.4SPECIFICATIONS OperatingPrinciple Ultrasonic pulse/echo method with dual elementprobe Displaytype 2.4”ColorScreen Resolution 0.001”,.01”/0.01mm(Inch/Metricselectable) MeasuringRange 0.02‐20.0” Dependantuponprobe&material Repeatability +/‐.001” (+/‐0.05mm) Soundvelocityrange 0.0197‐0.3937in/us (500‐9999m/s) MeasuringError: 0.001”(upto0.984”) 0.007”(upto3.03” 0.019”(4”andabove) DisplayModes: DigitalThicknessReadout A‐scanorB‐scan Min/MaxCapture Diff‐Value/Reduction V‐PathCorrection Automatic UpdateRate Selectable:4Hz,8Hz,16Hz Refreshrate 4/second AlarmSettings Min/MaxAlarm Dynamicwaveformcolorchangeonalarm Operatingtemperature 14‐122ºF (‐10ºC‐+50ºC) AutoShut‐Off After5minutes Powersupply 3vAAalkalinebatteries(2pc) OperatingTime Approx.36hours Dimensions 6.02”x2.99”x1.45” (153x76x37mm) Weight 9.9oz (280g) 1.5MAINFUCTIONS 1.User‐friendlyinterface 2.OptionalA‐scanwaveformdisplay 3.TimebasedB‐scanfunctiondisplayscrosssectionoftestpiece 4.Differentcouplingstatusshowingindifferentcolors 5.Thicknessalarm:automaticalarmwhentheresultexceedsthepresetthicknessrange 6.Limitsvaluemode:Displaystheminimumandmaximumvalueswhenmeasuring 7.Differencemode:gettingthedifferencebetweentheactualvalueandthenormalvalueaswellasthe percentage 8.Inch/MetricConversion 9.Extralargememory:upto100,000values&1000waveforms 10.SelectableResolution:0.001”,0.01”or.01mm 11.Optionalrectificationmode:RF,fullwave,half+,half‐ 12.Optionalwaveform:outlinemodeorfilledmode 13.Approx.batteryLife:35hours 2.KEYBOARDFUCTIONS Totally,thereare9keysonthekeyboard,including3virtualfunctionkeys( ),fourdirection keys ( ), two specialized function keys ( ). See the following illustration(2.1) 2.1KEYBOARDFUCTIONILLUSTRATION 3.MEASURINGTHICKNESS 3.1SoundVelocityCalibration In order for the gauge to make accurate measurements, it must be set to the correct sound velocity for the materialbeingmeasured.Differenttypesofmaterialhavedifferentinherentsoundvelocities.Ifthegaugeisnotsetto thecorrectsoundvelocity,allofthemeasurementsthegaugemakeswillbeerroneousbysomefixedpercentage.The One‐Pointcalibrationisthesimplestandmostcommonlyusedcalibrationprocedureoptimizinglinearityoverlarge ranges. The Two‐point calibration allows for greater accuracy over small ranges by calculating the probe zero and velocity. Note:OneandTwopointcalibrationsmustbeperformedonmaterialwiththepaintorcoatingremoved.Failureto removethepaintorcoatingpriortocalibrationwillresultinamultimaterialvelocitycalculationthatmaybedifferent fromtheactualmaterialvelocityintendedtobemeasured. Calibrationtoaknownthickness Note: This procedure requires a sample piece of the specific material to be measured, the exact thickness of whichisknown,e.g.fromhavingbeenmeasuredbysomeothermeanssuchasacaliperormicrometer. 1) Performatestonthebuilt‐intestblocktoverifyunitisfunctioningproperly 2) Applycouplanttothesamplepiece. 3) Pressthetransduceragainstthesamplepiece,makingsurethatthetransducersitsflatagainstthesurfaceof thesample.Thedisplayshouldshowsomethicknessvalue,andthecouplingstatusindicatorshouldappear steadily. 4) Havingachievedastablereading,removethetransducer.Ifthedisplayedthicknesschangesfromthevalue shownwhilethetransducerwascoupled,repeatstep3. (5) Pressthedirectionkeystoadjustthevelocitytomaketheactualthicknessvaluebesamewiththeknown value. 2.Adjustthevelocitydirectlyifthematerialvelocityisknown.Seeillustration3.1: 3.1VELOCITYADJUSTINGSTEPS 3.2PRESETOTHERSPECIFICATIONS Press “M” to enter the user interface, which allows you to select and adjust options like VIEW MODE, PROBE SETUP, MINIMUM ALARM, MAXIMUM ALARM, NORMAL THICKNESS, MINIMUM of B‐SCAN, MAXIMUM of B‐SCAN, RECTIFICATION, RECTIFICATION WAVEFORM, RESOLUTION, LANGUAGE,UPDATERATES,UNITS,ANDDEFAULTSETUP.Seethefollowingfigure: 3.2MenuSelections VIEWMODE:normalmode,differencemodeandlimitscanningmode. PROBESETUP:PT‐10/PT‐08(normalprobe),PT‐06(smallprobe),PT‐04(miniprobe),GT‐12(high‐temperature probe),andZT‐12(castironprobe). MINIMUM ALARM: set the minimum thickness alarm value. The result will be displayed in red if the actual thicknessislessthantheminimumvaluepreset. MAXIMUM ALARM: set the maximum thickness alarm value. The result will be displayed in red if the actual thicknessismorethanthemaximumvaluepreset. NORMAL THICKNESS: set the normal thickness. The real concrete application will be introduced in the DIFFERENCEMODE. MINIMUMofB‐SCAN:setminimumthicknessforB‐scan MAXIMUMofB‐SCAN:setmaximumthicknessforB‐scan RECTIFICATION MODE: RF, full wave, half ‐, half +. RF describes the complete echo waveform; full wave indicatesthehalf+echoandtheoverturnedhalf‐echo;half–meansputtingoffthehalf+echoandturnthehalf –overto+;half+meansputtingoffthehalf–echoandonlyleftthehalf+echo. RECTIFICATIONWAVEFORM:outlinemodeandfillmode. RESOLUTION:SelectableResolution:0.001”,0.01”or.01mm LANGUAGE:theinterfacelanguage:ChineseorEnglish. UNITS:Selectable:mmorinch. UPDATERATE:Updatetherateofmeasurementresult.Optional4,8or16Hz. AUTOPOWERDOWN:Thedevicecanbesettoshutoffafter5,10,20minutesofinactivity.IfsettoOFFthenthe Cal/ONbuttonwillpowertheunitonoroffwhenpressed. DELETEALLFILES:Emptyallmemoryofvaluesandwaveforms. DEFAULTSETUP:Bringsunitbacktooriginalfactorysettings 3.3CALIBRATION Before using the UTG‐4000, calibrating the gage as well as the probe is necessary. See the following steps: 3.3CALIBRATIONSTEPILLUSTRATION 1.Adjustthesoundvelocityto5900m/saccordingtothemethodinchapter3.1. 2. After turning on the gage, press to enter the calibration interface. The screen shows PUT PROBEONZEROBLOCKUSECOUPLANT. 3.Spreadthecouplantaccordingtothepresentation,thenputtheprobeonthezeroblockandmakeit coupledcompletelyuntilthescreenshowsACQUIRINGPLEASESTAYCOUPLED. 4.Holdafewseconds,andthescreenwilldisplayPROBEZEROCOMPLETEREMOVEPROBEFROMZERO BLOCK. Remove the probe from the zero block and it goes back to the measuring interface automatically. 5. During the calibration, press the ABORT at any time to stop calibrating and the unit will go backtothemeasuringinterface. 3.4DISPLAYMODES Therearethreemeasuringinterfacedisplaymodes:normalmode,A‐scanmodeandB‐scanmode. And thereare three display modes of Normal interface:The thickness value mode, Difference/rate of reduction measurement mode, MAX/MIN measurement mode. Select this in “VIEW MODE” of configuration. ATTENTION:Whentheprobeisproperly“coupled”tothesurfaceoftheobjectbeingtested,the displaywillbeshowninWHITE.IfnotcoupledproperlythenthevalueswillbeshowninGREEN.When thevaluesexceedtheupperorlowerlimitsettingthenthevalueswillbeshowninRED. THICKNESSVALUEMODE:Thisinterfacemainlyshowsthevelocityofmaterial,thepresentthickness valueandunit. 3.4NORMALMODEINTERFACE 1—thepresentthicknessvalue 2—unit 3—materialvelocity 4—batterypower 5—A—scaninterface DIFFERENCE/RATE‐OF‐REDUCTION MODE: This interface shows the measured value, the preset nominalthicknessvalue,thedifferencebetweenthemeasuredvalueandthepresetvalueandtheratio betweenthedifferenceandthenormalvalue.Beforeusingthismode,presettingthenominalthickness isneeded.Themethodcanbetakenaccordingtochapter3.6. 3.5DIFFERENCEMODEINTERFACE 1—the difference between the normal value and the preset value 2—the ratio between the differenceandthenominalvalue 3—thepresentthicknessvalue 4—thenormalvalue 5—differencesignal 6—materialvelocity 7—batterypower 8—A—scaninterface LIMITS VALUE SCANNING MODE: this mode allows the customer to test the thickness of material continuouslyandtoshowtheupper/lowerlimitsafterthetests.Itshowstheminimumandmaximum valuesduringthetestsaswellasthepresentthickness.PresstheRESET togetthelimitswhen measuringthethickness. 3.6LIMITSVALUEMODEINTERFACE 1—thepresentthicknessvalue 2—themaximumvalue 3—theminimumvalue 4—unit 5—materialvelocity 6—batterypower 7—A—scaninterface 8—reset A‐scanmode:ThisinterfaceallowsyoutoseethepresentthicknessvalueandtheA‐scanwaveformat thesametime.Therightsideoftheinterfaceisthespecificationadjustingarea,whichcanbeadjusted foramorepreciseresult.Thedetailedintroductioncanbeseeninchapter3.5. 3.7A‐SCANMODEINTERFACE 1—waveform display area 2—gate 3—material velocity 4—the present highlighted specification 5—measuringpoint(thefirstpointofintersectionbetweenthewaveformandthegate) 6—thepresentthicknessvalue 7—theblankconfines 8—therangeconfines 9—thespecificationadjustingarea 10—highlightedsignal 11—digitmode 12—specificationswitch 13—batterypower ATTENTION: When the probe and the object are not completely coupled, the letters in the various interfacesareshowninGREEN,whenproperlycoupled,theyaredisplayedinWHITEcolorandwhen theeithertheupperorlowerlimitsareexceeded,thelettersaredisplayedinREDcolor. 3.5ADJUSTINGTHESPECIFICATIONSINA‐SCANINTERFACE IntheA‐scaninterface,pressthebottomrightbuttonNEXT tohighlightthevaluetobeadjusted. Then press the direction keys to adjust the values. Up and down keys are used for small increments, whileleftandrightforlargerincrements. GAIN—adjustthesensitivityofthegagewithunitdB.Thelargerthegainis,thehigherthesensitivityis. Thegainrangesfrom8to55dB. RANGE—adjustthetestingrangethatthescreendisplays.Therangeis0.393”to5.70”(10~145mm). DELAY—shown at the beginning point of the screen. The waveform will move horizontally when adjustingthisvalue. BLANK—hide the unnecessary and useless clutter in front of the main waves. The red line on the bottom of the screen shows the blank confines. The adjusting blank confines are the present range confines. Incorrect readings can be caused by material issues such as corrosion, internal material defectsorevenaspecificmaterialsuchasaluminum.OnlyadjustmentsintheGaincansolvepartofthe problem. GATE—locktheechoandshowthethicknessvalueofthehighestecho.Adjustingtheheightofthegate. Thegaterangesfrom1to50mm.Onlywhenthewaveformishigherthanthegatewillthisgaugebe abletotaketheechoandshowthevalue. Attention:thiswillonlyshowwhentheGATEspecificationishighlighted. ThefirstintersectionpointbetweenthewaveformandgateisshownwithaREDarrowwhichwillhelp you determine if this thickness value is correct. If correctly tested, the red arrow should point to the frontofthefirstbottomecho. 3.6REALCASEANALYSIS 1.Whenmeasuringthethickness,itspossiblethatsmallgainspreventthepreciseresults.Asshownin thefollowingfigure,thethicknessofthetestingobjectisabout5mm,butasfortheoversmallgain,the measuringresultis10.77mmasthefirstechohasnotbrokenthegateandthegatelocatesthesecond echo automatically. This is obviously an incorrect result, and customer can pull up the echo by enhancing the gain setting to make the first echo break the gate and finally pinpoint the correct measurement. 3.8 REAL CASE 1 2.Therearesomedefectsinthetestingobject,andthegatelocksthedefectechoes.Asshowninthe followingfigure,thethicknessofthetestingobjectisabout10mm,butasthereareobviousdefects(the defect echoes are shown on the display) and the gate locks the defect echoes which have broken the gate,thus,thetestingresultshownisthethicknessofthedefectarea.Therightmeasurementcanbe realizedbyadjustingthegatesettingabovethedefectechoes. 3.9 REAL CASE 2 3. If there are some surface faults in the testing object and the gate locks the defect echoes, the measuringresult willbe the thickness of the defect area. In this condition,the customer can use the BLANK function to get the correct testing result. As shown in the following figure, the line on the bottomofthescreen,whichweusetoshieldthedefectechoes,indicatestheblankconfinesandmakes thegatenotcatchtheechoeswithintheblankconfines,thus,therightthicknessvalueisacquired. 3.10 REAL CASE 3 3.7OPERATIONOFB‐SCANINTERFACE 3.7.1B‐ScanDisplay 1) B‐scanimagedisplay 2) Whitepointer 3) Redtriangle(displaysminthickness) 4) Thethicknessvalueofthepointerposition 5) TheminimumthicknessrangeinB‐scan 6) ThemaximumthicknessvalueinB‐scan 7) ErasingthecurrentB‐0scanimagesandmeasurements 8) Enterthenumericalmeasurementinterface 9) Soundvelocity 10)TheminimumthicknessvalueontheB‐scanimage 11)Parameterdisplayarea 12)Gainvalue 3.72IntroductiontoB‐scan The UTG‐4000 has a time base B‐scan function. By moving the probe across the surface of the workpieceyoucanobtainacrosssectionalprofileofyourpart.Thisallowsforviewingthecontourof yourpart. When you remove the probe from the workpiece, the gauge can obtain the minimum value of the B scanimageandindicatethatpositionwithaREDarrow.YoucanseeanypointthicknessvalueoftheB scanimagebymovingthepointertoanyposition. 3.8DUAL‐ECHO(THRU‐COATING)MODE The UTG‐4000 can accurately measure the actual material below the coating utilizing the dual echo measurementprinciple.Thisfeatureallowsyoutomeasurethematerialwithouthavingtodestroyor removetheprotectivecoatingofasurface. Press“M”togointotheparameterinterfaceandsetMeasurementmodetoDUAL‐ECHOandpress“M” toreturntothemainmeasurementscreen. 3.8.1A‐Scaninterfaceindual‐echomode TheUTG‐4000allowsyoutouseA‐scanwhileinthedual‐echomode.ThisfeaturehasaddedE‐blanking optionaswellastheoptiontocancelGATE.Whenmeasuring,thebluestripareaindicatesthelengthof echoblanking./thewaveformabovethisisconsideredinvalid. Seefig3.16below: 1) Identificationofdual‐echomode 2) Bluearrowindicatessecondaryecho 3) E‐blanking 4) Blueline:thelengthofecho‐blanking 5) Redline:lengthofinitialblanking 6) Redarrow:indicatesfirstecho BlankinginDual‐EchoMode: a) Initialblanking:Theredblankinglinestartsatzero.Thewaveformwithinthescopeofthered stripisconsideredinvalidduetolackofclutterbetweenthestartingpointandthefirstecho. b) E‐Blanking(echoblanking):thebluelineindicatedonthescreenappearswhenameasurement has been successfully taken. This line starts at the first echo measurement point. A waveform withinthescopeofthebluestripeisalsoconsideredinvalidduetolackofclutterbetweenthe firstechoandsecondaryecho. 4.DATASTORAGEFUNCTIONS TheUTG‐4000utilizesamicrogridformatallowingthisunittostoreupto100,000thicknessvalues and1,000A/Bscanwaveforms.SeeFig3.17below Thickness values and waveforms can be mixed and stored in the same file. The stored data can be transferredtoyourPCviaUSBoutputandsavedasanEXCELorTXTfile. 4.1THICKNESSVALUEANDWAVEFORMSTORAGE 1) 2) 3) 4) 5) 6) 7) Storagefilenumber Linemark Rowmark Datainmemory Returntomainmenu Savecurrentvalueorwaveform Deletetheselecteddata 4.2Browsingstoreddata Press“M”toentertheconfigurationdisplay.Highlight“GRIDFILE”andpresstheP1buttontoselect. Usetheupanddownarrowstochoosethedatayouwanttorecall.PresstheCAL/ONbuttontoconfirm. 5.CAREANDMAINTENANCE 5.1POWERSOURCEINSPECTION During the usage of the gage, the current battery power will be shown on the display. When the battery power is low, the customer should change the batteries promptly so that the measuring accuracywon’tbeinfluenced.Thestepsofchangingbatteriesareasfollow: 1. Turnoffthegage. 2. Loosenthescrewsonthebackoftheunitandremovethebatterycover. 3. Takeoutthebatteriesandreplacewithnewones.Paycarefulattentiontopolarity. Attention:whennotusingthegaugeforextendedperiodsoftime,pleaseremovebatteriestoprevent anyleakageorcorrosion. 5.2 Maintenance: 1. Alwayskeepyourgauge,probe,cablecleanofanydirt,dust,fluids,etctopreventearlywearofthese parts. 2. Besuretoavoidanycausticliquidsuchasalcoholorviscousfluidstopreventcorrosiontothecover andthedisplaywindow.Cleanwithwateronly. 3. Avoidscratchingthesurfaceoftheprobe.Awornprobewillcauseunstablereadings. 5.3Service/Support ContactPhaseIIforalltechnicalsupportand/orservice. Tosendyourunitinforanytypeofservice,pleasecallforaRMA#. (201)962‐7373 ApplicationsNotes: Measuringpipeandtubing. When measuring a piece of pipe to determine the thickness of the pipe wall, orientation of the transducers is important. If the diameter of the pipe is larger than approximately 4 inches, measurements should be made with the transducer oriented so that the gap in the wearface is perpendicular (at right angle) to the long axis of the pipe. For smaller pipe diameters, two measurements should be performed, one with the wearface gap perpendicular, another with the gap paralleltothelongaxisofthepipe.Thesmallerofthetwodisplayedvaluesshouldthenbetakenasthe thicknessatthatpoint. Measuringhotsurfaces Thevelocityofsoundthroughasubstanceisdependantuponitstemperature.Asmaterialsheatup, thevelocityofsoundthroughthemdecreases.Inmostapplicationswithsurfacetemperatureslessthan about100 ,nospecialproceduresmustbeobserved.Attemperaturesabovethispoint,thechangein sound velocity of the material being measured starts to have a noticeable effect upon ultrasonic measurement. At such elevated temperatures, it is recommended that the user perform a calibration procedureonasamplepieceofknownthickness,whichisatornearthetemperatureofthematerialto be measured. This will allow the gauge to correctly calculate the velocity of sound through the hot material. When performing measurements on hot surfaces, it may also be necessary to use a specially constructed high‐temperature transducer. These transducers are built using materials which can withstand high temperatures. Even so, it is recommended that the probe be left in contact with the surfaceforasshortatimeasneededtoacquireastablemeasurement.Whilethetransducerisincontact withahotsurface,itwillbegintoheatup,andthroughthermalexpansionandothereffects,maybegin toadverselyaffecttheaccuracyofmeasurements. Measuringlaminatedmaterials. Laminated materials are unique in that their density (and therefore sound‐velocity) may vary considerablyfromonepiecetoanother.Somelaminatedmaterialsmayevenexhibitnoticeablechanges in sound‐velocity across a single surface. The only way to reliably measure such materials is by performingacalibrationprocedureonasamplepieceofknownthickness.Ideally,thissamplematerial should be a part of the same piece being measured, or at least from the same lamination batch. By calibratingtoeachtestpieceindividually,theeffectsofvariationofsound‐velocitywillbeminimized. An additional important consideration when measuring laminates, is that any included air gaps or pockets will cause an early reflection of the ultrasound beam. This effect will be noticed as a sudden decreaseinthicknessinanotherwiseregularsurface.Whilethismayimpedeaccuratemeasurementof totalmaterialthickness,itdoesprovidetheuserwithpositiveindicationofairgapsinthelaminate. Suitabilityofmaterials Ultrasonicthicknessmeasurementsrelyonpassingasoundwavethroughthematerialbeingmeasured. Not all materials are good at transmitting sound. Ultrasonic thickness measurement is practical in a wide variety of materials including metals, plastics, and glass. Materials that are difficult include some castmaterials,concrete,wood,fiberglass,andsomerubber. Couplants Allultrasonicapplicationsrequiresomemediumtocouplethesoundfromthetransducertothe test piece. Typically a high viscosity liquid is used as the medium. The sound used in ultrasonic thicknessmeasurementdoesnottravelthroughairefficiently. Awidevarietyofcouplantmaterialsmaybeusedinultrasonicgauging.Propyleneglycolissuitable for most applications. In difficult applications where maximum transfer of sound energy is required, glycerinisrecommended.However,onsomemetalsglycerincanpromotecorrosionbymeansofwater absorptionandthusmaybeundesirable. Othersuitablecouplantsformeasurementsatnormaltemperaturesmayincludewater,variousoils and greases, gels, and silicone fluids. Measurements at elevated temperatures will require specially formulatedhightemperaturecouplants. Inherent in ultrasonic thickness measurement is the possibility that the instrument will use the second rather than the first echo from the back surface of the material being measured while in standardpulse‐echomode.ThismayresultinathicknessreadingthatisTWICEwhatitshouldbe.The Responsibility for proper use of the instrument and recognition of these types of phenomenon rests solelywiththeuseroftheinstrument. Allvelocitiesareapproximations: SOUNDVELOCITYMEASUREMENTCHART Material Air Aluminum AluminaOxide Beryllium BoronCarbide Brass Cadmium Copper Glass(crown) Glycerin Gold Ice Inconel Iron Iron(cast) Lead Magnesium Mercury Molybdenum Monel Neoprene Nickel Nylon,6.6 Oil(SAE30) Platinum Plexiglass Polyethylene Polystyrene Polyurethane Quartz Rubber,Butyl Silver Steel,Mild Steel,Stainless Teflon Tin Titanium Tungsten Uranium Water Zinc SoundVelocity Inch/µS M/s 0.013 330 0.250 6300 0.390 9900 0.510 12900 0.430 11000 0.170 4300 0.110 2800 0.180 4700 0.210 5300 0.075 1900 0.130 3200 0.160 4000 0.220 5700 0.230 5900 0.180 4600 0.085 2200 0.230 5800 0.057 1400 0.250 6300 0.210 5400 0.063 1600 0.220 5600 0.100 2600 0.067 1700 0.130 3300 0.110 1700 0.070 1900 0.0930 2400 0.0700 1900 0.230 5800 0.070 1800 0.140 3600 0.233 5900 0.230 5800 0.060 1400 0.130 3300 0.240 6100 0.200 5200 0.130 3400 0.584 1480 0.170 4200 MainHeadquarters:U.S.A PhaseIIMachine&Tool,Inc. 21IndustrialAve UpperSaddleRiver,NJ.07458USA Tel:(201)962‐7373 Fax:(201)962‐8353 GeneralE‐Mail:[email protected] BEIJING,CHINA PhaseIIMeasuringInstruments(Beijing)Ltd. Room301,Bldg2 QingYuanXiLi,HaidianDistrict,Beijing100192,China Tel:+86‐10‐59792409 Fax:+86‐10‐59814851 GeneralE‐mail:[email protected] MEXICO PhaseIIdeMexico CalleANo.4PromerPiso Col.SanMarcosAzcapotzalco C.P02020Mexico Tel:011‐525‐5538‐39771 Fax:same GeneralE‐mail:[email protected] VENEZUELA PhaseIIHerramientasUniversalesEDCM.CA. Av.FranciscoLazoMartiCC PlazaSantaMonicaPBLocal SantaMonica,Caracas1040Venezuela Tel:212‐690‐28‐21 Fax:212‐693‐29‐16 E‐mail:[email protected]
© Copyright 2026 Paperzz