UTG-4000 Data Sheet

21IndustrialAve UpperSaddleRiver,NJ.07458
P(201)962‐7373 F(201)962‐8353
E‐mail:[email protected]
ModelNo.UTG‐4000
283 Veterans Blvd
Carlstadt, NJ. 07072
(201) 933-6300
www.phase2plus.com
www.phase2plus.com
CONTENT
1. GENERAL INTRODUCTION3
1.1 CONSTRUCTION OF THE GAGE........3
1.2 STANDARD CONFIGURATIONS.........3
1.3 OPTIONAL CONFIGURATIONS..........3
1.4 SPECIFICATIONS.............................4
1.5 MAIN FUCTIONS..............................5
2. KEYBOARD FUCTIONS
5
3. MEASURING THE THICKNESS 6
3.1 PRESET THE MATERIAL’S VELOCITY6
3.2 PRESET OTHER SPECIFICATIONS....7
3.3 CALIBRATION.................................8
3.4 DISPLAY MODES.............................9
3.5 ADJUSTING THE SPECIFICATIONS IN A-SCAN MODE
........................................................11
3.6 REAL CASES ANALYSIS................12
4.CARE AND MAINTENANCES 16
4.1 POWER SOURCE INSPECTION......17
4.2.......................................Maintenance
4.3 Service / Support..........................17
APPENDIX: SOUND VELOCITIES OF COMMON MATERIALS 17
1. GENERAL INTRODUCTION
Utilizing live A‐scan and time based B‐scan for absolute correctness, this new state of the art
thicknessgaugeispackedwithusefulfeaturesallowinguserstobeconfidentofthedisplayedvalueson
the most critical of applications. This multi‐functional unit offers everything from basic measurement,
ScanwithMin/Maxviewing,GO/NOGOdisplayandAdjustableSoundVelocity.Thisdynamicsonicgauge
is designed to measure the thickness of metallic and non‐metallic materials in critical situations that
ordinarythicknessgaugescouldn’tdo. TheUTG‐4000willaccuratelydisplayreadingsineitherinchormillimeterafterasimplecalibrationto
aknownthicknessorsoundvelocity.
DISCLAIMER:
TheUTG‐4000isamulit‐functionalthicknessgaugethatallowstheusertremendouscontroloverthefunctionalityandperformance
ofthisinstrument.Althoughthisprovidestheuserwithcontrolandversatilityfornumerousapplications,italsorequiresthatthe
userbefamiliarwiththefunction,operationandwaveforminterpretationoftheinstrumentaswell.
Itisrecommendedthattheuserspendasufficientamountoftimeworkingwiththisinstrumentpriortofielduse.
Responsibilityforproperuserestssolelywiththeuseofthisinstrument.
1.1CONSTRUCTIONOFTHEGAGE
1.2STANDARDCONFIGURATION
Qty
ThicknessGauge
1
5MHzPROBE
1 AABatteries
2
2ozCouplantGel
1
RuggedCarrycase
1
OperationManual
1
1.3OPTIONALACCESSORIES
High‐temperatureprobe
Castironprobe
SmallProbe(6mm)
MiniProbe(4mm)
Probecable
5‐Stepblock
1.4SPECIFICATIONS
OperatingPrinciple
Ultrasonic pulse/echo method with dual
elementprobe
Displaytype
2.4”ColorScreen
Resolution
0.001”,.01”/0.01mm(Inch/Metricselectable)
MeasuringRange
0.02‐20.0” Dependantuponprobe&material
Repeatability
+/‐.001” (+/‐0.05mm)
Soundvelocityrange
0.0197‐0.3937in/us (500‐9999m/s)
MeasuringError:
0.001”(upto0.984”)
0.007”(upto3.03”
0.019”(4”andabove)
DisplayModes:
DigitalThicknessReadout
A‐scanorB‐scan
Min/MaxCapture
Diff‐Value/Reduction
V‐PathCorrection
Automatic
UpdateRate
Selectable:4Hz,8Hz,16Hz
Refreshrate
4/second
AlarmSettings
Min/MaxAlarm
Dynamicwaveformcolorchangeonalarm
Operatingtemperature
14‐122ºF (‐10ºC‐+50ºC)
AutoShut‐Off
After5minutes
Powersupply
3vAAalkalinebatteries(2pc)
OperatingTime
Approx.36hours Dimensions
6.02”x2.99”x1.45” (153x76x37mm)
Weight
9.9oz (280g)
1.5MAINFUCTIONS
1.User‐friendlyinterface
2.OptionalA‐scanwaveformdisplay
3.TimebasedB‐scanfunctiondisplayscrosssectionoftestpiece
4.Differentcouplingstatusshowingindifferentcolors 5.Thicknessalarm:automaticalarmwhentheresultexceedsthepresetthicknessrange 6.Limitsvaluemode:Displaystheminimumandmaximumvalueswhenmeasuring
7.Differencemode:gettingthedifferencebetweentheactualvalueandthenormalvalueaswellasthe
percentage
8.Inch/MetricConversion
9.Extralargememory:upto100,000values&1000waveforms
10.SelectableResolution:0.001”,0.01”or.01mm
11.Optionalrectificationmode:RF,fullwave,half+,half‐
12.Optionalwaveform:outlinemodeorfilledmode
13.Approx.batteryLife:35hours
2.KEYBOARDFUCTIONS
Totally,thereare9keysonthekeyboard,including3virtualfunctionkeys( ),fourdirection
keys ( ), two specialized function keys ( ). See the following
illustration(2.1) 2.1KEYBOARDFUCTIONILLUSTRATION
3.MEASURINGTHICKNESS
3.1SoundVelocityCalibration
In order for the gauge to make accurate measurements, it must be set to the correct sound velocity for the
materialbeingmeasured.Differenttypesofmaterialhavedifferentinherentsoundvelocities.Ifthegaugeisnotsetto
thecorrectsoundvelocity,allofthemeasurementsthegaugemakeswillbeerroneousbysomefixedpercentage.The
One‐Pointcalibrationisthesimplestandmostcommonlyusedcalibrationprocedureoptimizinglinearityoverlarge
ranges. The Two‐point calibration allows for greater accuracy over small ranges by calculating the probe zero and
velocity. Note:OneandTwopointcalibrationsmustbeperformedonmaterialwiththepaintorcoatingremoved.Failureto
removethepaintorcoatingpriortocalibrationwillresultinamultimaterialvelocitycalculationthatmaybedifferent
fromtheactualmaterialvelocityintendedtobemeasured.
Calibrationtoaknownthickness
Note: This procedure requires a sample piece of the specific material to be measured, the exact thickness of
whichisknown,e.g.fromhavingbeenmeasuredbysomeothermeanssuchasacaliperormicrometer.
1) Performatestonthebuilt‐intestblocktoverifyunitisfunctioningproperly 2) Applycouplanttothesamplepiece.
3) Pressthetransduceragainstthesamplepiece,makingsurethatthetransducersitsflatagainstthesurfaceof
thesample.Thedisplayshouldshowsomethicknessvalue,andthecouplingstatusindicatorshouldappear
steadily.
4) Havingachievedastablereading,removethetransducer.Ifthedisplayedthicknesschangesfromthevalue
shownwhilethetransducerwascoupled,repeatstep3.
(5) Pressthedirectionkeystoadjustthevelocitytomaketheactualthicknessvaluebesamewiththeknown
value. 2.Adjustthevelocitydirectlyifthematerialvelocityisknown.Seeillustration3.1: 3.1VELOCITYADJUSTINGSTEPS
3.2PRESETOTHERSPECIFICATIONS
Press “M” to enter the user interface, which allows you to select and adjust options like VIEW
MODE, PROBE SETUP, MINIMUM ALARM, MAXIMUM ALARM, NORMAL THICKNESS, MINIMUM of
B‐SCAN, MAXIMUM of B‐SCAN, RECTIFICATION, RECTIFICATION WAVEFORM, RESOLUTION,
LANGUAGE,UPDATERATES,UNITS,ANDDEFAULTSETUP.Seethefollowingfigure: 3.2MenuSelections
VIEWMODE:normalmode,differencemodeandlimitscanningmode. PROBESETUP:PT‐10/PT‐08(normalprobe),PT‐06(smallprobe),PT‐04(miniprobe),GT‐12(high‐temperature
probe),andZT‐12(castironprobe).
MINIMUM ALARM: set the minimum thickness alarm value. The result will be displayed in red if the actual
thicknessislessthantheminimumvaluepreset.
MAXIMUM ALARM: set the maximum thickness alarm value. The result will be displayed in red if the actual
thicknessismorethanthemaximumvaluepreset.
NORMAL THICKNESS: set the normal thickness. The real concrete application will be introduced in the
DIFFERENCEMODE.
MINIMUMofB‐SCAN:setminimumthicknessforB‐scan
MAXIMUMofB‐SCAN:setmaximumthicknessforB‐scan
RECTIFICATION MODE: RF, full wave, half ‐, half +. RF describes the complete echo waveform; full wave
indicatesthehalf+echoandtheoverturnedhalf‐echo;half–meansputtingoffthehalf+echoandturnthehalf
–overto+;half+meansputtingoffthehalf–echoandonlyleftthehalf+echo. RECTIFICATIONWAVEFORM:outlinemodeandfillmode.
RESOLUTION:SelectableResolution:0.001”,0.01”or.01mm
LANGUAGE:theinterfacelanguage:ChineseorEnglish.
UNITS:Selectable:mmorinch.
UPDATERATE:Updatetherateofmeasurementresult.Optional4,8or16Hz.
AUTOPOWERDOWN:Thedevicecanbesettoshutoffafter5,10,20minutesofinactivity.IfsettoOFFthenthe
Cal/ONbuttonwillpowertheunitonoroffwhenpressed.
DELETEALLFILES:Emptyallmemoryofvaluesandwaveforms.
DEFAULTSETUP:Bringsunitbacktooriginalfactorysettings
3.3CALIBRATION
Before using the UTG‐4000, calibrating the gage as well as the probe is necessary. See the following
steps:
3.3CALIBRATIONSTEPILLUSTRATION
1.Adjustthesoundvelocityto5900m/saccordingtothemethodinchapter3.1.
2. After turning on the gage, press to enter the calibration interface. The screen shows PUT
PROBEONZEROBLOCKUSECOUPLANT.
3.Spreadthecouplantaccordingtothepresentation,thenputtheprobeonthezeroblockandmakeit
coupledcompletelyuntilthescreenshowsACQUIRINGPLEASESTAYCOUPLED.
4.Holdafewseconds,andthescreenwilldisplayPROBEZEROCOMPLETEREMOVEPROBEFROMZERO
BLOCK. Remove the probe from the zero block and it goes back to the measuring interface
automatically. 5. During the calibration, press the ABORT at any time to stop calibrating and the unit will go
backtothemeasuringinterface. 3.4DISPLAYMODES
Therearethreemeasuringinterfacedisplaymodes:normalmode,A‐scanmodeandB‐scanmode.
And thereare three display modes of Normal interface:The thickness value mode, Difference/rate of
reduction measurement mode, MAX/MIN measurement mode. Select this in “VIEW MODE” of
configuration.
ATTENTION:Whentheprobeisproperly“coupled”tothesurfaceoftheobjectbeingtested,the
displaywillbeshowninWHITE.IfnotcoupledproperlythenthevalueswillbeshowninGREEN.When
thevaluesexceedtheupperorlowerlimitsettingthenthevalueswillbeshowninRED.
THICKNESSVALUEMODE:Thisinterfacemainlyshowsthevelocityofmaterial,thepresentthickness
valueandunit. 3.4NORMALMODEINTERFACE
1—thepresentthicknessvalue 2—unit 3—materialvelocity 4—batterypower 5—A—scaninterface
DIFFERENCE/RATE‐OF‐REDUCTION MODE: This interface shows the measured value, the preset
nominalthicknessvalue,thedifferencebetweenthemeasuredvalueandthepresetvalueandtheratio
betweenthedifferenceandthenormalvalue.Beforeusingthismode,presettingthenominalthickness
isneeded.Themethodcanbetakenaccordingtochapter3.6.
3.5DIFFERENCEMODEINTERFACE
1—the difference between the normal value and the preset value 2—the ratio between the
differenceandthenominalvalue 3—thepresentthicknessvalue 4—thenormalvalue
5—differencesignal 6—materialvelocity 7—batterypower 8—A—scaninterface
LIMITS VALUE SCANNING MODE: this mode allows the customer to test the thickness of material
continuouslyandtoshowtheupper/lowerlimitsafterthetests.Itshowstheminimumandmaximum
valuesduringthetestsaswellasthepresentthickness.PresstheRESET togetthelimitswhen
measuringthethickness. 3.6LIMITSVALUEMODEINTERFACE
1—thepresentthicknessvalue 2—themaximumvalue 3—theminimumvalue 4—unit
5—materialvelocity 6—batterypower 7—A—scaninterface 8—reset
A‐scanmode:ThisinterfaceallowsyoutoseethepresentthicknessvalueandtheA‐scanwaveformat
thesametime.Therightsideoftheinterfaceisthespecificationadjustingarea,whichcanbeadjusted
foramorepreciseresult.Thedetailedintroductioncanbeseeninchapter3.5.
3.7A‐SCANMODEINTERFACE
1—waveform display area 2—gate 3—material velocity 4—the present highlighted
specification 5—measuringpoint(thefirstpointofintersectionbetweenthewaveformandthegate) 6—thepresentthicknessvalue 7—theblankconfines
8—therangeconfines 9—thespecificationadjustingarea 10—highlightedsignal 11—digitmode 12—specificationswitch 13—batterypower
ATTENTION: When the probe and the object are not completely coupled, the letters in the various
interfacesareshowninGREEN,whenproperlycoupled,theyaredisplayedinWHITEcolorandwhen
theeithertheupperorlowerlimitsareexceeded,thelettersaredisplayedinREDcolor. 3.5ADJUSTINGTHESPECIFICATIONSINA‐SCANINTERFACE IntheA‐scaninterface,pressthebottomrightbuttonNEXT tohighlightthevaluetobeadjusted.
Then press the direction keys to adjust the values. Up and down keys are used for small increments,
whileleftandrightforlargerincrements. GAIN—adjustthesensitivityofthegagewithunitdB.Thelargerthegainis,thehigherthesensitivityis.
Thegainrangesfrom8to55dB.
RANGE—adjustthetestingrangethatthescreendisplays.Therangeis0.393”to5.70”(10~145mm).
DELAY—shown at the beginning point of the screen. The waveform will move horizontally when
adjustingthisvalue. BLANK—hide the unnecessary and useless clutter in front of the main waves. The red line on the
bottom of the screen shows the blank confines. The adjusting blank confines are the present range
confines. Incorrect readings can be caused by material issues such as corrosion, internal material
defectsorevenaspecificmaterialsuchasaluminum.OnlyadjustmentsintheGaincansolvepartofthe
problem.
GATE—locktheechoandshowthethicknessvalueofthehighestecho.Adjustingtheheightofthegate.
Thegaterangesfrom1to50mm.Onlywhenthewaveformishigherthanthegatewillthisgaugebe
abletotaketheechoandshowthevalue.
Attention:thiswillonlyshowwhentheGATEspecificationishighlighted. ThefirstintersectionpointbetweenthewaveformandgateisshownwithaREDarrowwhichwillhelp
you determine if this thickness value is correct. If correctly tested, the red arrow should point to the
frontofthefirstbottomecho.
3.6REALCASEANALYSIS
1.Whenmeasuringthethickness,itspossiblethatsmallgainspreventthepreciseresults.Asshownin
thefollowingfigure,thethicknessofthetestingobjectisabout5mm,butasfortheoversmallgain,the
measuringresultis10.77mmasthefirstechohasnotbrokenthegateandthegatelocatesthesecond
echo automatically. This is obviously an incorrect result, and customer can pull up the echo by
enhancing the gain setting to make the first echo break the gate and finally pinpoint the correct
measurement.
3.8 REAL CASE 1
2.Therearesomedefectsinthetestingobject,andthegatelocksthedefectechoes.Asshowninthe
followingfigure,thethicknessofthetestingobjectisabout10mm,butasthereareobviousdefects(the
defect echoes are shown on the display) and the gate locks the defect echoes which have broken the
gate,thus,thetestingresultshownisthethicknessofthedefectarea.Therightmeasurementcanbe
realizedbyadjustingthegatesettingabovethedefectechoes. 3.9 REAL CASE 2
3. If there are some surface faults in the testing object and the gate locks the defect echoes, the
measuringresult willbe the thickness of the defect area. In this condition,the customer can use the
BLANK function to get the correct testing result. As shown in the following figure, the line on the
bottomofthescreen,whichweusetoshieldthedefectechoes,indicatestheblankconfinesandmakes
thegatenotcatchtheechoeswithintheblankconfines,thus,therightthicknessvalueisacquired. 3.10 REAL CASE 3
3.7OPERATIONOFB‐SCANINTERFACE
3.7.1B‐ScanDisplay
1) B‐scanimagedisplay
2) Whitepointer
3) Redtriangle(displaysminthickness)
4) Thethicknessvalueofthepointerposition
5) TheminimumthicknessrangeinB‐scan
6) ThemaximumthicknessvalueinB‐scan
7) ErasingthecurrentB‐0scanimagesandmeasurements
8) Enterthenumericalmeasurementinterface
9) Soundvelocity
10)TheminimumthicknessvalueontheB‐scanimage
11)Parameterdisplayarea 12)Gainvalue
3.72IntroductiontoB‐scan
The UTG‐4000 has a time base B‐scan function. By moving the probe across the surface of the
workpieceyoucanobtainacrosssectionalprofileofyourpart.Thisallowsforviewingthecontourof
yourpart. When you remove the probe from the workpiece, the gauge can obtain the minimum value of the B
scanimageandindicatethatpositionwithaREDarrow.YoucanseeanypointthicknessvalueoftheB
scanimagebymovingthepointertoanyposition.
3.8DUAL‐ECHO(THRU‐COATING)MODE
The UTG‐4000 can accurately measure the actual material below the coating utilizing the dual echo
measurementprinciple.Thisfeatureallowsyoutomeasurethematerialwithouthavingtodestroyor
removetheprotectivecoatingofasurface.
Press“M”togointotheparameterinterfaceandsetMeasurementmodetoDUAL‐ECHOandpress“M”
toreturntothemainmeasurementscreen.
3.8.1A‐Scaninterfaceindual‐echomode
TheUTG‐4000allowsyoutouseA‐scanwhileinthedual‐echomode.ThisfeaturehasaddedE‐blanking
optionaswellastheoptiontocancelGATE.Whenmeasuring,thebluestripareaindicatesthelengthof
echoblanking./thewaveformabovethisisconsideredinvalid.
Seefig3.16below:
1) Identificationofdual‐echomode
2) Bluearrowindicatessecondaryecho
3) E‐blanking
4) Blueline:thelengthofecho‐blanking
5) Redline:lengthofinitialblanking
6) Redarrow:indicatesfirstecho
BlankinginDual‐EchoMode:
a) Initialblanking:Theredblankinglinestartsatzero.Thewaveformwithinthescopeofthered
stripisconsideredinvalidduetolackofclutterbetweenthestartingpointandthefirstecho.
b) E‐Blanking(echoblanking):thebluelineindicatedonthescreenappearswhenameasurement
has been successfully taken. This line starts at the first echo measurement point. A waveform
withinthescopeofthebluestripeisalsoconsideredinvalidduetolackofclutterbetweenthe
firstechoandsecondaryecho.
4.DATASTORAGEFUNCTIONS
TheUTG‐4000utilizesamicrogridformatallowingthisunittostoreupto100,000thicknessvalues
and1,000A/Bscanwaveforms.SeeFig3.17below
Thickness values and waveforms can be mixed and stored in the same file. The stored data can be
transferredtoyourPCviaUSBoutputandsavedasanEXCELorTXTfile.
4.1THICKNESSVALUEANDWAVEFORMSTORAGE
1)
2)
3)
4)
5)
6)
7)
Storagefilenumber
Linemark
Rowmark
Datainmemory
Returntomainmenu
Savecurrentvalueorwaveform
Deletetheselecteddata
4.2Browsingstoreddata
Press“M”toentertheconfigurationdisplay.Highlight“GRIDFILE”andpresstheP1buttontoselect.
Usetheupanddownarrowstochoosethedatayouwanttorecall.PresstheCAL/ONbuttontoconfirm.
5.CAREANDMAINTENANCE
5.1POWERSOURCEINSPECTION
During the usage of the gage, the current battery power will be shown on the display. When the
battery power is low, the customer should change the batteries promptly so that the measuring
accuracywon’tbeinfluenced.Thestepsofchangingbatteriesareasfollow: 1. Turnoffthegage.
2. Loosenthescrewsonthebackoftheunitandremovethebatterycover.
3. Takeoutthebatteriesandreplacewithnewones.Paycarefulattentiontopolarity. Attention:whennotusingthegaugeforextendedperiodsoftime,pleaseremovebatteriestoprevent
anyleakageorcorrosion. 5.2 Maintenance:
1. Alwayskeepyourgauge,probe,cablecleanofanydirt,dust,fluids,etctopreventearlywearofthese
parts.
2. Besuretoavoidanycausticliquidsuchasalcoholorviscousfluidstopreventcorrosiontothecover
andthedisplaywindow.Cleanwithwateronly.
3. Avoidscratchingthesurfaceoftheprobe.Awornprobewillcauseunstablereadings.
5.3Service/Support
ContactPhaseIIforalltechnicalsupportand/orservice.
Tosendyourunitinforanytypeofservice,pleasecallforaRMA#.
(201)962‐7373
ApplicationsNotes:
Measuringpipeandtubing.
When measuring a piece of pipe to determine the thickness of the pipe wall, orientation of the
transducers is important. If the diameter of the pipe is larger than approximately 4 inches,
measurements should be made with the transducer oriented so that the gap in the wearface is
perpendicular (at right angle) to the long axis of the pipe. For smaller pipe diameters, two
measurements should be performed, one with the wearface gap perpendicular, another with the gap
paralleltothelongaxisofthepipe.Thesmallerofthetwodisplayedvaluesshouldthenbetakenasthe
thicknessatthatpoint. Measuringhotsurfaces
Thevelocityofsoundthroughasubstanceisdependantuponitstemperature.Asmaterialsheatup,
thevelocityofsoundthroughthemdecreases.Inmostapplicationswithsurfacetemperatureslessthan
about100 ,nospecialproceduresmustbeobserved.Attemperaturesabovethispoint,thechangein
sound velocity of the material being measured starts to have a noticeable effect upon ultrasonic
measurement. At such elevated temperatures, it is recommended that the user perform a calibration
procedureonasamplepieceofknownthickness,whichisatornearthetemperatureofthematerialto
be measured. This will allow the gauge to correctly calculate the velocity of sound through the hot
material. When performing measurements on hot surfaces, it may also be necessary to use a specially
constructed high‐temperature transducer. These transducers are built using materials which can
withstand high temperatures. Even so, it is recommended that the probe be left in contact with the
surfaceforasshortatimeasneededtoacquireastablemeasurement.Whilethetransducerisincontact
withahotsurface,itwillbegintoheatup,andthroughthermalexpansionandothereffects,maybegin
toadverselyaffecttheaccuracyofmeasurements. Measuringlaminatedmaterials.
Laminated materials are unique in that their density (and therefore sound‐velocity) may vary
considerablyfromonepiecetoanother.Somelaminatedmaterialsmayevenexhibitnoticeablechanges
in sound‐velocity across a single surface. The only way to reliably measure such materials is by
performingacalibrationprocedureonasamplepieceofknownthickness.Ideally,thissamplematerial
should be a part of the same piece being measured, or at least from the same lamination batch. By
calibratingtoeachtestpieceindividually,theeffectsofvariationofsound‐velocitywillbeminimized.
An additional important consideration when measuring laminates, is that any included air gaps or
pockets will cause an early reflection of the ultrasound beam. This effect will be noticed as a sudden
decreaseinthicknessinanotherwiseregularsurface.Whilethismayimpedeaccuratemeasurementof
totalmaterialthickness,itdoesprovidetheuserwithpositiveindicationofairgapsinthelaminate.
Suitabilityofmaterials
Ultrasonicthicknessmeasurementsrelyonpassingasoundwavethroughthematerialbeingmeasured.
Not all materials are good at transmitting sound. Ultrasonic thickness measurement is practical in a
wide variety of materials including metals, plastics, and glass. Materials that are difficult include some
castmaterials,concrete,wood,fiberglass,andsomerubber.
Couplants
Allultrasonicapplicationsrequiresomemediumtocouplethesoundfromthetransducertothe
test piece. Typically a high viscosity liquid is used as the medium. The sound used in ultrasonic
thicknessmeasurementdoesnottravelthroughairefficiently. Awidevarietyofcouplantmaterialsmaybeusedinultrasonicgauging.Propyleneglycolissuitable
for most applications. In difficult applications where maximum transfer of sound energy is required,
glycerinisrecommended.However,onsomemetalsglycerincanpromotecorrosionbymeansofwater
absorptionandthusmaybeundesirable. Othersuitablecouplantsformeasurementsatnormaltemperaturesmayincludewater,variousoils
and greases, gels, and silicone fluids. Measurements at elevated temperatures will require specially
formulatedhightemperaturecouplants.
Inherent in ultrasonic thickness measurement is the possibility that the instrument will use the
second rather than the first echo from the back surface of the material being measured while in
standardpulse‐echomode.ThismayresultinathicknessreadingthatisTWICEwhatitshouldbe.The
Responsibility for proper use of the instrument and recognition of these types of phenomenon rests
solelywiththeuseroftheinstrument.
Allvelocitiesareapproximations:
SOUNDVELOCITYMEASUREMENTCHART
Material
Air
Aluminum
AluminaOxide
Beryllium
BoronCarbide
Brass
Cadmium
Copper
Glass(crown)
Glycerin
Gold
Ice
Inconel
Iron
Iron(cast)
Lead
Magnesium
Mercury
Molybdenum
Monel
Neoprene
Nickel
Nylon,6.6
Oil(SAE30)
Platinum
Plexiglass
Polyethylene
Polystyrene
Polyurethane
Quartz
Rubber,Butyl
Silver
Steel,Mild
Steel,Stainless
Teflon
Tin
Titanium
Tungsten
Uranium
Water
Zinc
SoundVelocity
Inch/µS
M/s
0.013
330
0.250
6300
0.390
9900
0.510
12900
0.430
11000
0.170
4300
0.110
2800
0.180
4700
0.210
5300
0.075
1900
0.130
3200
0.160
4000
0.220
5700
0.230
5900
0.180
4600
0.085
2200
0.230
5800
0.057
1400
0.250
6300
0.210
5400
0.063
1600
0.220
5600
0.100
2600
0.067
1700
0.130
3300
0.110
1700
0.070
1900
0.0930
2400
0.0700
1900
0.230
5800
0.070
1800
0.140
3600
0.233
5900
0.230
5800
0.060
1400
0.130
3300
0.240
6100
0.200
5200
0.130
3400
0.584
1480
0.170
4200
MainHeadquarters:U.S.A
PhaseIIMachine&Tool,Inc. 21IndustrialAve
UpperSaddleRiver,NJ.07458USA
Tel:(201)962‐7373
Fax:(201)962‐8353
GeneralE‐Mail:[email protected]
BEIJING,CHINA
PhaseIIMeasuringInstruments(Beijing)Ltd.
Room301,Bldg2 QingYuanXiLi,HaidianDistrict,Beijing100192,China
Tel:+86‐10‐59792409
Fax:+86‐10‐59814851
GeneralE‐mail:[email protected]
MEXICO
PhaseIIdeMexico
CalleANo.4PromerPiso
Col.SanMarcosAzcapotzalco
C.P02020Mexico
Tel:011‐525‐5538‐39771
Fax:same
GeneralE‐mail:[email protected]
VENEZUELA
PhaseIIHerramientasUniversalesEDCM.CA.
Av.FranciscoLazoMartiCC
PlazaSantaMonicaPBLocal
SantaMonica,Caracas1040Venezuela
Tel:212‐690‐28‐21 Fax:212‐693‐29‐16 E‐mail:[email protected]