Mass spectrometry in radionuclide analyses P E Warwick, I W Croudace & T Warneke Southampton Oceanography Centre Range of mass spectrometric techniques • • • • • TIMS SIMS RIMS AMS ICPMS - quadrupole ICPMS - HR-ICPMS - MC-ICPMS Advantages of mass spectrometry • Often rapid analyses • Improved data quality (e.g. 238U:235U ratios) • Permits analyses that are not possible radiometrically (e.g. 239Pu and 240Pu separately) • Improved sensitivity for long lived nuclides Comparison of mass spectrometric techniques Method U required for detection U required for isotope ratios Isotopes reported Typical accuracy Typical precision (2σ) HRGS 10 µg 1 mg 235 U, 238U 10% 10% Alpha spec 10 ng 10 µg 234 U, 238U 10% 5% Quad ICPMS 5 pg 1µg 235 U, 236U, 238U 2% 5% HRICPMS 50 fg 5µg 234 U, 235U, 236U, 238U 1 – 8% 0.1 – 1% TIMS 1 fg 1 ng 234 U, 235U, 236U, 238U 0.1 – 2% 0.1 – 0.2% SIMS 5 pg 5 ng 235 U, 238U 1 – 5% 10% MCICPMS 5-50 fg 1 pg 234 U, 235U, 236U, 238U 0.1 – 0.2% 0.1 – 0.2% Modified from Toole et al, 1997 Sensitivity of ICPMS versus alpha spectrometry 210 10000 1000 228 Po Th 208 Po 232 Minimum activity (Bq) 100 10 U 209 238 241 Pu Am 226 1 0.1 243 Am/240Pu 230 Ra 239 0.01 Po Th 233 U 242 Pu 234 0.001 U 237 Pu Np 236 0.0001 235 0.00001 0.000001 0.0000001 1E-01 U 1E+01 1E+03 U 2 x 106 years 238 1E+05 1E+09 1E+07 Half life (years) U 232 Th 1E+11 Assuming 10ppt limit 5ml solution Sensitivity of MC-ICPMS versus alpha spectrometry 210 1 0.1 228 Minimum activity (Bq) 0.01 0.001 Th Po 208 Po 232 U 209 238 Pu 241 Po Am 243 230 226 Ra 0.0001 1E-05 239 1E-06 Am/ 240Pu Th 233 U 242 Pu Pu 234 1E-07 U 237 Np 236 1E-08 235 1E-09 1E-10 1E-11 1E-01 U ca . 300 years 1E+01 U 238 U 1E+03 1E+05 1E+07 Half life (years) 1E+09 232 Th 1E+11 Assuming 5ppq limit 1ml solution Challenges • • • • • • • Isobaric interferences (e.g. 99Ru on 99Tc) Polyatomic interferences (e.g. 197Au40Ar on 237Np) Peak tailing Isotopic fractionation Beam instability Matrix effects Method blanks High Precision Pu Isotope Ratio Measurements Ian W. Croudace Thorsten Warneke Phillip E. Warwick Rex N. Taylor J. Andy Milton Geosciences Advisory Unit Southampton Oceanography Centre University of Southampton, UK. www. gau.org.uk 240 239 240 Analytical techniques used for Pu/ Analytical techniques used for Pu/239Pu Pu METHOD ADVANTAGE DISADVANTAGE NOMINAL PRECISION 2 sigma ~50 fg Alpha Spectrometry Not suitable because alpha energies interfere AMS Can measure ~50fg High potential cost ~ 18% ICPMS Quad High ionisation efficiency Ion beam instability > 30% ICPMS Sector High ionisation efficiency Better stability than ICPMS Quad ~ 3% TIMS Stable ion beam • Low ionisation efficiency ~ 10% • No internal interelement fractionation correction MC-ICPMS • Unstable ion beam but multicollection negates this effect • Interelement mass fractionation correction capability • Can measure 5 fg High ionisation efficiency ~ 1% Some applications for 240Pu/239Pu ratios Source characterisation Analogous to using 238Pu/239,240Pu but is a clearer discriminator e.g. the 240Pu/239Pu in weapon’s testing depend on the parameters of each individual test . Therefore the 240Pu/239Pu in the fallout varies with time. Dating using impulse and continuous events Similar to using 239,240Pu, 241Am or 137Cs The 240Pu/239Pu versus time has significant features that can be attributed to certain years. Range Range of of Pu Pu isotope isotope ratios ratios Gas Cooled Reactor Presurised Advanced Pressure Tube Boiling Gas Cooled Water Water reactor Reactor Reactor Boiling Water Reactor Sellafield discharge 1950s Power reactors Recent Chernobyl accident Average weapon test Weapon grade Weapon (modern - Los Alamos National Laboratories) Weapon (pre-1960 Los Alamos National Laboratories) 0 0.2 0.4 240 Pu/239Pu 0.6 0.8 Stage 1 piggy-back columns 1. Load sample in 10 ml 8M HNO3 with 1drop of concentrated HCl 2. Elute 20 ml 8M HNO3 followed by 30ml of 3M HNO3 6 x 0.7 cm i.d. Eichrom 1-X8 ANION RESIN Pu 2 x 0.7 cm i.d. Eichrom UTEVA resin U STAGE 2 Separate the columns 30ml 3M HNO3 25ml 9M HCl to remove Th Pu eluted with 50 ml of fresh 1.2M HCl/H2O2 (50:1) U eluted with 10ml 0.02M HCl Anion UTEVA Pu U Pu Plus use a small 2 column nd U anion clean-up 238 Removal of any U remaining because U 239 hydride interferes with Pu measurement. Plutonium Plutonium isotope isotope ratio ratio measurement measurement Objective: To measure 240Pu/239Pu with a reproducibility and accuracy <5% 2sd on samples containing <50fg Pu (<150 µBq), to enable the analysis of low-level environmental samples. Method: Multicollector ICP-MS (Micromass IsoProbe) using : Peak jump ion counting through a Daly detector with inter-peak normalisation to 236U. Corrections required: 1. On-peak blank subtraction including detector zero 2. Tail from 238U at +1 a.m.u. (200 ppb) 3. 238UH+ interference at m/z 239 (5.5 ppm) 4. Pu addition from 236+233U spike (2 ppm) 5. Mass bias of U-Pu (0.6% amu-1) counts. -1 sec 300 200 239Pu 238U tail 238UH+ 100 0 Acid blank 238.5 239.0 239.5 m/z 239 composition using: 25 ppq Pu 30 ppb U no 233+236U Sequence 1 Sequence 2 Sequence 3 Axial Daly 240 239 242 Low 1 Faraday (237) 236 (239) Low 2 Faraday 236 (235) 238 Low 3 Faraday (234) 233 236 Detector and peak-jump array for Pu isotope ratios using U-double spike Taylor R.N., Warneke T., Milton J.A., Croudace I.W., Warwick P.E. and Nesbitt R.W. (2001) Plutonium isotope ratio analysis at fg to ng levels by multicollector ICP-MS. J. Anal. At. Spectrom., 16, 279-284. 236U-233U (1:1) added to separated Pu solutions to correct for mass bias and instrument drift between Daly peak jumps -0.2% -0.3% 242 -0.4% Pu/239Pu mass bias amu-1 -0.5% -0.6% -0.7% -0.7% -0.6% -0.5% -0.4% -0.3% -0.2% 236 U/233U mass bias amu-1 1ng 239Pu = 2.3 Bq 10 pg ml-1 I 1 pg ml-1 I 100 pg ml-1 I 0.230 0.225 240 Pu/ 239 Pu 0.235 100 fg ml-1 I Therefore only ~1g of a typical UK soil with fallout Pu of 0.3 Bq/Kg is needed for a precise analysis of the Pu isotope ratio 0.220 Rothamsted grass MC-ICP-MS Site 112 1 gram UK soil 0.215 0.00001 0.0001 0.001 239 Pu Volts 0.01 0.1 0.26 RIMS this study 0.24 MC-ICP PJD 0.22 240 Pu 0.20 239 Pu ICP AMS TIMS 0.18 ICP TIMS 0.16 0.14 1 10 100 1000 femtograms (g.10-15) of Pu analysed 10000 240 Accuracy for Certified 240 Pu/ Pu atom ratios 239 Pu/ NBL 126 NBL 128 Measured Pu Atom ratio NBL122 239 0.1320 0.0209 0.0007 240 239 Pu/ Pu 0.5 ng/ml 5 ng/ml 0.1318 ± 0.001 0.1321 ± 0.0001 (n=4) (n=3) 0.0211 0.0204 (n=1) (n=1) - 0.0007 (n=1) UK-Pu-5 0.9662 ± 0.0011 - 0.9645 ± 0.0013 (n=7) NBL –US New Brunswick National Laboratory; UK-Pu-5 - AEA Technology An application of the developed method Establishing a northern latitude fallout record 1 Rothamsted Grass Archive (IACR Rothamsted, Harpenden) Unique collection of herbage and soil since 1843. Samples collected and stored annually or biannually Given permission to take 50 grams of dried grass from 1945 until 1990 2 Alpine ice core 116 m ice core, Mont Blanc Warneke et al. Literature data Warneke et al. France & PRC ITB Treaty US & USSR Mike + NTS NTS June 1952 Warneke, Croudace, Warwick & Taylor (2002) Earth Planetary Science Letters, 203, 1047-57 Warneke, Croudace, Warwick & Taylor (2002) EPSL, 203, 1047-57 Uranium isotope - 238U/235U fallout record - Europe 2sd error 2sd error -52 1990 Alpine Ice Core -57 -62 1980 -67 -72 year 1975 -77 1970 -82 1965 -87 -92 1960 -97 1955 -102 -107 1950 1945 137 -112 137.5 138 238 U/235U 138.5 125 130 135 238 U/235U -117 140 depth (m) 1985 Rothamsted Grass (UK) Summary MC-ICP-MS is a highly effective method to measure 240Pu/239Pu in environmental and other samples. Precise measurements are possible at <10 fg Pu (<30 µBq). Used to investigate fallout history, global and local nuclear events, sediment ages in estuarine environments, source of plutonium contamination. Other Possible Future Application Has great potential in plutonium and uranium bioassay Precise U isotopic analysis using only 50ml of sample Typically 1-2 litres urine (bulked monthly) are analysed using alpha spectrometry Clearly MC-ICPMS can greatly enhance these data quality
© Copyright 2026 Paperzz