Introduction to µSR

Introduction to µSR
Roberto De Renzi
DiFeST, Department of Physics and Earth Sciences
University of Parma
Italy
Setup of the first spectrometer at ISIS, MuSR
1896
12/05/2014
1987
De Renzi - ISIS Muon Training
2014
Introduction to µSR
• Muon history
–
–
–
–
The charged particles
Anti-matter
The neutrinos
Parity violation
• How it works
–
–
–
–
–
Production
Spin polarization
Transport
Implantation
Detection
• Few examples
• Summary
12/05/2014
De Renzi - ISIS Muon Training
2
J.J. Thomson: the electron
B
e
m
J J Thomson
Electrons orbit around B
e
Thomson measures the ratio
:
m
a light (lepton) q<0 particle
1896
12/05/2014
He suggests recipes for
the best plum pudding
1955
De Renzi - ISIS Muon Training
2014
3
E. Rutherford: the nucleus
particles through
a gold foil scatter at
large angles
An even better cake!
E Rutherford
1911
12/05/2014
1955
De Renzi - ISIS Muon Training
Bohr atom
2014
4
E. Rutherford: the proton
particles through
N2 scatter hydrogen
nuclei
Let's call them
protons!
1918
12/05/2014
1955
De Renzi - ISIS Muon Training
E Rutherford
2014
5
P.A.M. Dirac, C. Anderson:
the positron
From relativity, quadratic energy form
2
2
2
2
E =p c +m c
E
e-
4
0
Dirac predicted the electron sea
e-
E = √ p 2 c 2 +m 2 c 4
PAM Dirac
e?
E =−√ p 2 c 2 +m 2 c 4
No, it's an
anti-electron
B
19281932
12/05/2014
1955
De Renzi - ISIS Muon Training
CD Anderson
2014
6
Antimatter
Dirac's E<0 solutions: each particle has an antiparticle
proton
p ⇔ p̄
+
p
p antiproton
electron
e ⇔ ē antielectron = positron
+
e
e
B
1932
12/05/2014
1955
De Renzi - ISIS Muon Training
CD Anderson
2014
7
J. Chadwick: the neutron
particles from Po on Bo
produce unknown radiation
Po

N2
n
N
Neutral particle with mass mnc2
= 938 MeV
The name is
= 1.0014 mpc2
my idea, yo!
Nuclear mass
= 1800 mec2
didn't add up!
heavy
(baryon)
E Rutherford
12/05/2014
1932
1955
De Renzi - ISIS Muon Training
J Chadwick
2014
8
Pauli suggested a neutral
particle for β decays
Beta decay at rest,
if it were a 2-body decay
products would have fixed energies
There must be
14
6
14
7
C →
14
7
N +e
N
an additional
neutral
particle,
the neutron!
−
e
−
W Pauli
Instead they have an energy spectrum
3-body decay!
?
1930
12/05/2014
1955
De Renzi - ISIS Muon Training
2014
9
Pauli suggested a neutrino
Beta decay at rest,
if it were a 2-body decay
products would have fixed energies
There must be
14
6
14
7
C →
14
7
N +e
an additional
neutral
particle,
the neutron!
−
N
e
−
W Pauli
Instead they have an energy spectrum
After Chadwick's
discovery of the
neutron let's call
it neutrino
14
6
1930
1932
12/05/2014
C →
1955
De Renzi - ISIS Muon Training
14
7
−
N +e + ν̄e
E Fermi
2014
10
H. Yukawa: the meson
Nuclei are made of n and p+. What force binds them with finite range?
Coulomb force = exchange of photons
e-
hν
p+
mν = 0
In analogy
n meson p+
mc2 ~ 150 MeV
Mass justifies screening, finite range
V (r )∝ 1
r
1
V (r )∝ e
r
−
hr
√ 2 mc
V (q )∝ 12
q
V (q )∝
1
2 2
2 2m c
q +
2
h
1935
12/05/2014
H Yukawa
1955
De Renzi - ISIS Muon Training
0.5
140
980 Mev
leptons mesons baryons
2014
11
C. Anderson, S Neddermayer:
mesotron
Within two years a new particle with that mass (~)
is found. C.D. Anderson calls it mesotron
100 < mc2 < 150 MeV
with
cosmic ray
balloons
VF Hess
However its decay is a bit
slow
But I don't know
that yet
CD Anderson
12/05/2014
τ ~ 2 μs
and it has spin
S=1/2
1936
1955
De Renzi - ISIS Muon Training
I measured it
in 1941
BB Rossi
2014
12
M. Conversi: not Yukawa's
meson?
Furthermore the mesotron does not interact
strongly enough with matter.
μ ⇔ μ̄
+
μ
μ
M Conversi
Fe
C
µ+
0.67 ± 0.07
0.36 ± 0.05
µ-
0.03 ± 0.03
0.27 ± 0.03
μ - + p + → n + νμ
1946
12/05/2014
1955
De Renzi - ISIS Muon Training
2014
13
C. Powell G. Occhialini: Two
particles, pion and muon
μ
e
Three tracks in a photographic emulsions at Mt
Chacaltaya (5600 m).
C Powell
The π is Yukawa's meson
G Occhialini
mπ = 140 MeV/c2
τπ = 26 ns
S = 0
The μ is a lepton (a heavier electron)
mμ = 106 MeV/c2
τμ = 2200 ns
S = ½
μ
π
1947
12/05/2014
1955
De Renzi - ISIS Muon Training
2014
14
C. Powell G. Occhialini: Two
particles, pion and muon
Three tracks in a photographic emulsions at Mt
Chacaltaya (5600 m).
C Powell
μ
e
The π is Yukawa's meson
G Occhialini
τπ = 26 ns
S = 0
W Pauli
Hey, there's
something
missing here
The μ is a lepton (a heavier electron)
mμ = 106 MeV/c2
τμ = 2200 ns
S = ½
μ
π
1947
12/05/2014
mπ = 140 MeV/c2
1955
De Renzi - ISIS Muon Training
2014
15
So what is missing?
W Pauli
Hey, there's
something
missing there
μ
e
μ
π
Linear momentum
conservation!
1947
12/05/2014
1955
De Renzi - ISIS Muon Training
2014
16
Pion and muon, both
weak decays
νe
π
π+ → μ + + νe
μ
νe
μ e
+
+
μ → e + ν̄μ + νe
Matter
Antimatter
+
e
ē =e
p
p
̄ =p
n
n̄
+
ππ 0= π̄0
π
̄ =π
+
μ
μ
̄ =μ
νμ
1947
12/05/2014
1955
De Renzi - ISIS Muon Training
2014
17
Recognitions
Incidentally:
●
●
●
●
●
●
●
●
●
Nobel prize for
1906 J.J. Thomson
1908 E. Rutherford
1933 P.A.M Dirac and E. Schrödinger
1935 J. Chadwick
1936 C.D. Anderson, V.F. Hess
1938 E. Fermi
1945 W. Pauli
1949 H. Yukawa
1950 C.F. Powell
12/05/2014
De Renzi - ISIS Muon Training
Physics
Chemistry
Physics
Physics
Physics
Physics
Physics
Physics
Physics
18
What we know today
π=u d̄
π0 = u ū
d d̄
c
t
g
up
charm
top
gluon
d
s
b

down
strange
bottom
photon
e
μ
τ
W
νe
νμ
ντ
W boson
Z0
Unified forces
Baryons
Mesons
u
Quarks
n=ddu
Leptons
p =uud
Z0 boson
Three families
1955
12/05/2014
De Renzi - ISIS Muon Training
2014
19
So we now have everything
We can produce pions
+
p + n → n + n + π
+
and they produce muons
+
+
π → μ + νμ
However μSR needs another ingredient to work....
12/05/2014
De Renzi - ISIS Muon Training
20
Lee and Yang: parity violation
In certain interactions (e.g. magnetic) parity is broken
i.e. the mirror image
does not exist in nature
TD Lee
CN Yang
Weak interactions violate parity
1957
12/05/2014
De Renzi - ISIS Muon Training
2014
21
Parity violation
CB Wu
Madame CB Wu
demonstrated that weak interactions violate parity
Only right-handed anti-neutrinos
and left-handed neutrinos
exist in nature
Anisotropic
decay
TD Lee and CN Yang got
the 1957 Nobel prize
1957
12/05/2014
De Renzi - ISIS Muon Training
2014
22
Parity violation
Also Garwin Lederman
& Weinrich showed that
weak interactions violate parity
+
+
μ → e + ν¯μ + νe
Nµ =- 1
1957
12/05/2014
De Renzi - ISIS Muon Training
Ne = -1
+1 = 0
N µ = -1
2014
23
Let's sum up
Accelerate protons to Ek > 280 MeV ~ 2mπc2, to impinge on a target
p+
12/05/2014
n
De Renzi - ISIS Muon Training
24
Pion production
Accelerate protons to > 280 MeV and impinge them on a target
n
π
n
+
p +n → n + n + π
12/05/2014
Lots of pions
+
De Renzi - ISIS Muon Training
25
Pion decay
Pions that decay at rest on the surface of the target
π
τ π =26 ns
12/05/2014
De Renzi - ISIS Muon Training
26
Parity violation
Remember! The pion is S=0
Two body decay

Sν=½
π+ → μ + + νμ
τ π =26 ns
12/05/2014

π
Sµ=½
100% spin polarized muon beams
thanks to parity violation
De Renzi - ISIS Muon Training
27
Energy and momentum
√ m 2π +p 2π= √ m 2μ +p 2μ + √ m 2ν + p 2ν
(c = 1)
p
π
p
p μ =−p ν =p
Energy and
momentum
conservation
m π = √ m 2μ +p 2 +p
I.e.
Hence
2
π
m 2μ +m 2π
E μ=
= 109.8 MeV/c 2
2m π
2
μ
m −m
p=
= 29.8 MeV/c
2m π
And the muon kinetic energy is
2
v p 29.8
β= = =
≈0.271
c E μ 109.8
De Renzi - ISIS Muon Training
28
E μ ,k = √ m +p −m μ= 4.12 MeV/c
2
μ
12/05/2014
2
Muon beam transport
Quadrupole Dipole
Qu
ad
ru p
ole



12/05/2014
pa
ir
brings muons
to stop in
a sample
(mostly at an
interstitial site)
De Renzi - ISIS Muon Training
29
Let's introduce Muonium
Mu = µ+ + e-
In matter it most often
binds to other ions forming
covalent bonds
1s
Mu
O
Bound state, light isotope of H
Paramagnetic
12/05/2014
De Renzi - ISIS Muon Training
Diamagnetic
30
Thermalization
4 MeV
Electron scattering
(ionization) 10-10 s
2-3 keV
Muonium formation
(e- capture/loss + collisions) 10-12 s
200 eV
few eV

12/05/2014
De Renzi - ISIS Muon Training
31
Muon decay
Average lifetime τμ = 2.2 μs
+
+
μ → e + ν e + ν̄μ
Ne
t
− τμ
e+
12/05/2014
De Renzi - ISIS Muon Training
32
Muon decay
Three body decay
μ+ → e + + νe + ν̄μ
Takes place like this:
νe
ν¯μ
μ+
(by parity violation
this does not take place)
e+
μ+
e+
12/05/2014
νe
ν¯μ
De Renzi - ISIS Muon Training
Emax ~ ½mµc2
~ 50 MeV
33
Muon decay
Three body decay
μ+ → e + + νe + ν̄μ
or like this:
νe
μ+
e+
Emin = 0
12/05/2014
De Renzi - ISIS Muon Training
ν¯μ
34
Energy distribution in the
muon decay
Positron distribution
P (x , θ)=1+A (x )cos θ
with asymmetry
A ( x )=
2 x −1
3−2 x
and
2x2
probability of emission E (x )=
3−2 x
12/05/2014
De Renzi - ISIS Muon Training
40
Asymmetry of the muon decay
Probability of e+ emission
Sµ
Sµ
E =E max
average over all energies
P (θ)∝1+cos θ
1
P (θ)∝1+ cos θ
3
12/05/2014
De Renzi - ISIS Muon Training
41
No spin dynamics
Sµ
B
F
Asymmetry
12/05/2014
De Renzi - ISIS Muon Training
42
Spin dynamics: precession
Magnetic moment
Semiclassical dynamics
m=γ ℏ S
ℏ
z^
dS
=m×B loc
dt
m(0)
z^
B = B z^
θ
y^
x^
x^
[
cos ωt sin θ
m (t )=m sin ω t sin θ
cos θ
]
[
]
[
−sin ω t sin θ
−sin ωt sin θ
ω m cos ω t sin θ =m (−γ B loc ) cos ω t sin θ
0
0
Larmor
http://www.fis.unipr.it/~derenzi/dispense/pmwiki.php?n=NMR.SpinPrecession
12/05/2014
De Renzi - ISIS Muon Training
43
]
Transverse field µSR
No spin dynamics
Spin precession at the Larmor
frequency ω=−γ B loc
γ
=135.5 MHz/T
2π
B
12/05/2014
De Renzi - ISIS Muon Training
44
Local field
ω=−γ B loc ∝m
Larmor frequency
magnetic
moment
e.g. in a magnetic material
dipolar
Fermi contact
B loc α=∑ D αi β m βi + A c m α1
i
α , β=x , y , z
12/05/2014
De Renzi - ISIS Muon Training
45
MuSR nowadays
µ
12/05/2014
De Renzi - ISIS Muon Training
46
PSI GPS: another workhorse
µ
y
x
z
12/05/2014
De Renzi - ISIS Muon Training
47
Example: Antiferromagnetic
YBa2Cu3O6+x
12/05/2014
De Renzi - ISIS Muon Training
48
The first magnet ever:
Fe3O4
A spinel ferrimagnet
with the metal-insulator
Verwey transition
12/05/2014
De Renzi - ISIS Muon Training
49
Examples
MnSi helimagnet
site determined by DFT
12/05/2014
De Renzi - ISIS Muon Training
50
Where?
TRIUMF
J-PARC
12/05/2014
De Renzi - ISIS Muon Training
ISIS
PSI
51
Summary
Muon properties
S
γ
m
τ
½
135.5 MHz/T
105.66 MeV
2.197 µs
γe/206.8 (*)
206.8 me
3.18 γp
mp/9
γ=g
e
2m
B
θ
Sμ
* The anomalous electron g (QED corrections) is 2.0023193043615(5)
cfr. the anomalous muon g
2.0023318414(1)
12/05/2014
De Renzi - ISIS Muon Training
52
Bibliography
●
●
●
●
●
Particle hystory survey
D. Griffith, John Wiley, New York, 1987, Ch. 1
μSR
A. Schenck, Adam Hilger, Bristol 1986
A. Yaouanc, P. Dalmas de Reotier, Oxford Univ. Press, 2011. - 486 p
S.J. Blundell Contemporary Physics 40, 175 (1999)
http://arxiv.org/abs/cond-mat/0207699
Some private notes at
http://www.fis.unipr.it/~derenzi/dispense/pmwiki.php?n=MuSR.MuSR
12/05/2014
De Renzi - ISIS Muon Training
53