Introduction to µSR Roberto De Renzi DiFeST, Department of Physics and Earth Sciences University of Parma Italy Setup of the first spectrometer at ISIS, MuSR 1896 12/05/2014 1987 De Renzi - ISIS Muon Training 2014 Introduction to µSR • Muon history – – – – The charged particles Anti-matter The neutrinos Parity violation • How it works – – – – – Production Spin polarization Transport Implantation Detection • Few examples • Summary 12/05/2014 De Renzi - ISIS Muon Training 2 J.J. Thomson: the electron B e m J J Thomson Electrons orbit around B e Thomson measures the ratio : m a light (lepton) q<0 particle 1896 12/05/2014 He suggests recipes for the best plum pudding 1955 De Renzi - ISIS Muon Training 2014 3 E. Rutherford: the nucleus particles through a gold foil scatter at large angles An even better cake! E Rutherford 1911 12/05/2014 1955 De Renzi - ISIS Muon Training Bohr atom 2014 4 E. Rutherford: the proton particles through N2 scatter hydrogen nuclei Let's call them protons! 1918 12/05/2014 1955 De Renzi - ISIS Muon Training E Rutherford 2014 5 P.A.M. Dirac, C. Anderson: the positron From relativity, quadratic energy form 2 2 2 2 E =p c +m c E e- 4 0 Dirac predicted the electron sea e- E = √ p 2 c 2 +m 2 c 4 PAM Dirac e? E =−√ p 2 c 2 +m 2 c 4 No, it's an anti-electron B 19281932 12/05/2014 1955 De Renzi - ISIS Muon Training CD Anderson 2014 6 Antimatter Dirac's E<0 solutions: each particle has an antiparticle proton p ⇔ p̄ + p p antiproton electron e ⇔ ē antielectron = positron + e e B 1932 12/05/2014 1955 De Renzi - ISIS Muon Training CD Anderson 2014 7 J. Chadwick: the neutron particles from Po on Bo produce unknown radiation Po N2 n N Neutral particle with mass mnc2 = 938 MeV The name is = 1.0014 mpc2 my idea, yo! Nuclear mass = 1800 mec2 didn't add up! heavy (baryon) E Rutherford 12/05/2014 1932 1955 De Renzi - ISIS Muon Training J Chadwick 2014 8 Pauli suggested a neutral particle for β decays Beta decay at rest, if it were a 2-body decay products would have fixed energies There must be 14 6 14 7 C → 14 7 N +e N an additional neutral particle, the neutron! − e − W Pauli Instead they have an energy spectrum 3-body decay! ? 1930 12/05/2014 1955 De Renzi - ISIS Muon Training 2014 9 Pauli suggested a neutrino Beta decay at rest, if it were a 2-body decay products would have fixed energies There must be 14 6 14 7 C → 14 7 N +e an additional neutral particle, the neutron! − N e − W Pauli Instead they have an energy spectrum After Chadwick's discovery of the neutron let's call it neutrino 14 6 1930 1932 12/05/2014 C → 1955 De Renzi - ISIS Muon Training 14 7 − N +e + ν̄e E Fermi 2014 10 H. Yukawa: the meson Nuclei are made of n and p+. What force binds them with finite range? Coulomb force = exchange of photons e- hν p+ mν = 0 In analogy n meson p+ mc2 ~ 150 MeV Mass justifies screening, finite range V (r )∝ 1 r 1 V (r )∝ e r − hr √ 2 mc V (q )∝ 12 q V (q )∝ 1 2 2 2 2m c q + 2 h 1935 12/05/2014 H Yukawa 1955 De Renzi - ISIS Muon Training 0.5 140 980 Mev leptons mesons baryons 2014 11 C. Anderson, S Neddermayer: mesotron Within two years a new particle with that mass (~) is found. C.D. Anderson calls it mesotron 100 < mc2 < 150 MeV with cosmic ray balloons VF Hess However its decay is a bit slow But I don't know that yet CD Anderson 12/05/2014 τ ~ 2 μs and it has spin S=1/2 1936 1955 De Renzi - ISIS Muon Training I measured it in 1941 BB Rossi 2014 12 M. Conversi: not Yukawa's meson? Furthermore the mesotron does not interact strongly enough with matter. μ ⇔ μ̄ + μ μ M Conversi Fe C µ+ 0.67 ± 0.07 0.36 ± 0.05 µ- 0.03 ± 0.03 0.27 ± 0.03 μ - + p + → n + νμ 1946 12/05/2014 1955 De Renzi - ISIS Muon Training 2014 13 C. Powell G. Occhialini: Two particles, pion and muon μ e Three tracks in a photographic emulsions at Mt Chacaltaya (5600 m). C Powell The π is Yukawa's meson G Occhialini mπ = 140 MeV/c2 τπ = 26 ns S = 0 The μ is a lepton (a heavier electron) mμ = 106 MeV/c2 τμ = 2200 ns S = ½ μ π 1947 12/05/2014 1955 De Renzi - ISIS Muon Training 2014 14 C. Powell G. Occhialini: Two particles, pion and muon Three tracks in a photographic emulsions at Mt Chacaltaya (5600 m). C Powell μ e The π is Yukawa's meson G Occhialini τπ = 26 ns S = 0 W Pauli Hey, there's something missing here The μ is a lepton (a heavier electron) mμ = 106 MeV/c2 τμ = 2200 ns S = ½ μ π 1947 12/05/2014 mπ = 140 MeV/c2 1955 De Renzi - ISIS Muon Training 2014 15 So what is missing? W Pauli Hey, there's something missing there μ e μ π Linear momentum conservation! 1947 12/05/2014 1955 De Renzi - ISIS Muon Training 2014 16 Pion and muon, both weak decays νe π π+ → μ + + νe μ νe μ e + + μ → e + ν̄μ + νe Matter Antimatter + e ē =e p p ̄ =p n n̄ + ππ 0= π̄0 π ̄ =π + μ μ ̄ =μ νμ 1947 12/05/2014 1955 De Renzi - ISIS Muon Training 2014 17 Recognitions Incidentally: ● ● ● ● ● ● ● ● ● Nobel prize for 1906 J.J. Thomson 1908 E. Rutherford 1933 P.A.M Dirac and E. Schrödinger 1935 J. Chadwick 1936 C.D. Anderson, V.F. Hess 1938 E. Fermi 1945 W. Pauli 1949 H. Yukawa 1950 C.F. Powell 12/05/2014 De Renzi - ISIS Muon Training Physics Chemistry Physics Physics Physics Physics Physics Physics Physics 18 What we know today π=u d̄ π0 = u ū d d̄ c t g up charm top gluon d s b down strange bottom photon e μ τ W νe νμ ντ W boson Z0 Unified forces Baryons Mesons u Quarks n=ddu Leptons p =uud Z0 boson Three families 1955 12/05/2014 De Renzi - ISIS Muon Training 2014 19 So we now have everything We can produce pions + p + n → n + n + π + and they produce muons + + π → μ + νμ However μSR needs another ingredient to work.... 12/05/2014 De Renzi - ISIS Muon Training 20 Lee and Yang: parity violation In certain interactions (e.g. magnetic) parity is broken i.e. the mirror image does not exist in nature TD Lee CN Yang Weak interactions violate parity 1957 12/05/2014 De Renzi - ISIS Muon Training 2014 21 Parity violation CB Wu Madame CB Wu demonstrated that weak interactions violate parity Only right-handed anti-neutrinos and left-handed neutrinos exist in nature Anisotropic decay TD Lee and CN Yang got the 1957 Nobel prize 1957 12/05/2014 De Renzi - ISIS Muon Training 2014 22 Parity violation Also Garwin Lederman & Weinrich showed that weak interactions violate parity + + μ → e + ν¯μ + νe Nµ =- 1 1957 12/05/2014 De Renzi - ISIS Muon Training Ne = -1 +1 = 0 N µ = -1 2014 23 Let's sum up Accelerate protons to Ek > 280 MeV ~ 2mπc2, to impinge on a target p+ 12/05/2014 n De Renzi - ISIS Muon Training 24 Pion production Accelerate protons to > 280 MeV and impinge them on a target n π n + p +n → n + n + π 12/05/2014 Lots of pions + De Renzi - ISIS Muon Training 25 Pion decay Pions that decay at rest on the surface of the target π τ π =26 ns 12/05/2014 De Renzi - ISIS Muon Training 26 Parity violation Remember! The pion is S=0 Two body decay Sν=½ π+ → μ + + νμ τ π =26 ns 12/05/2014 π Sµ=½ 100% spin polarized muon beams thanks to parity violation De Renzi - ISIS Muon Training 27 Energy and momentum √ m 2π +p 2π= √ m 2μ +p 2μ + √ m 2ν + p 2ν (c = 1) p π p p μ =−p ν =p Energy and momentum conservation m π = √ m 2μ +p 2 +p I.e. Hence 2 π m 2μ +m 2π E μ= = 109.8 MeV/c 2 2m π 2 μ m −m p= = 29.8 MeV/c 2m π And the muon kinetic energy is 2 v p 29.8 β= = = ≈0.271 c E μ 109.8 De Renzi - ISIS Muon Training 28 E μ ,k = √ m +p −m μ= 4.12 MeV/c 2 μ 12/05/2014 2 Muon beam transport Quadrupole Dipole Qu ad ru p ole 12/05/2014 pa ir brings muons to stop in a sample (mostly at an interstitial site) De Renzi - ISIS Muon Training 29 Let's introduce Muonium Mu = µ+ + e- In matter it most often binds to other ions forming covalent bonds 1s Mu O Bound state, light isotope of H Paramagnetic 12/05/2014 De Renzi - ISIS Muon Training Diamagnetic 30 Thermalization 4 MeV Electron scattering (ionization) 10-10 s 2-3 keV Muonium formation (e- capture/loss + collisions) 10-12 s 200 eV few eV 12/05/2014 De Renzi - ISIS Muon Training 31 Muon decay Average lifetime τμ = 2.2 μs + + μ → e + ν e + ν̄μ Ne t − τμ e+ 12/05/2014 De Renzi - ISIS Muon Training 32 Muon decay Three body decay μ+ → e + + νe + ν̄μ Takes place like this: νe ν¯μ μ+ (by parity violation this does not take place) e+ μ+ e+ 12/05/2014 νe ν¯μ De Renzi - ISIS Muon Training Emax ~ ½mµc2 ~ 50 MeV 33 Muon decay Three body decay μ+ → e + + νe + ν̄μ or like this: νe μ+ e+ Emin = 0 12/05/2014 De Renzi - ISIS Muon Training ν¯μ 34 Energy distribution in the muon decay Positron distribution P (x , θ)=1+A (x )cos θ with asymmetry A ( x )= 2 x −1 3−2 x and 2x2 probability of emission E (x )= 3−2 x 12/05/2014 De Renzi - ISIS Muon Training 40 Asymmetry of the muon decay Probability of e+ emission Sµ Sµ E =E max average over all energies P (θ)∝1+cos θ 1 P (θ)∝1+ cos θ 3 12/05/2014 De Renzi - ISIS Muon Training 41 No spin dynamics Sµ B F Asymmetry 12/05/2014 De Renzi - ISIS Muon Training 42 Spin dynamics: precession Magnetic moment Semiclassical dynamics m=γ ℏ S ℏ z^ dS =m×B loc dt m(0) z^ B = B z^ θ y^ x^ x^ [ cos ωt sin θ m (t )=m sin ω t sin θ cos θ ] [ ] [ −sin ω t sin θ −sin ωt sin θ ω m cos ω t sin θ =m (−γ B loc ) cos ω t sin θ 0 0 Larmor http://www.fis.unipr.it/~derenzi/dispense/pmwiki.php?n=NMR.SpinPrecession 12/05/2014 De Renzi - ISIS Muon Training 43 ] Transverse field µSR No spin dynamics Spin precession at the Larmor frequency ω=−γ B loc γ =135.5 MHz/T 2π B 12/05/2014 De Renzi - ISIS Muon Training 44 Local field ω=−γ B loc ∝m Larmor frequency magnetic moment e.g. in a magnetic material dipolar Fermi contact B loc α=∑ D αi β m βi + A c m α1 i α , β=x , y , z 12/05/2014 De Renzi - ISIS Muon Training 45 MuSR nowadays µ 12/05/2014 De Renzi - ISIS Muon Training 46 PSI GPS: another workhorse µ y x z 12/05/2014 De Renzi - ISIS Muon Training 47 Example: Antiferromagnetic YBa2Cu3O6+x 12/05/2014 De Renzi - ISIS Muon Training 48 The first magnet ever: Fe3O4 A spinel ferrimagnet with the metal-insulator Verwey transition 12/05/2014 De Renzi - ISIS Muon Training 49 Examples MnSi helimagnet site determined by DFT 12/05/2014 De Renzi - ISIS Muon Training 50 Where? TRIUMF J-PARC 12/05/2014 De Renzi - ISIS Muon Training ISIS PSI 51 Summary Muon properties S γ m τ ½ 135.5 MHz/T 105.66 MeV 2.197 µs γe/206.8 (*) 206.8 me 3.18 γp mp/9 γ=g e 2m B θ Sμ * The anomalous electron g (QED corrections) is 2.0023193043615(5) cfr. the anomalous muon g 2.0023318414(1) 12/05/2014 De Renzi - ISIS Muon Training 52 Bibliography ● ● ● ● ● Particle hystory survey D. Griffith, John Wiley, New York, 1987, Ch. 1 μSR A. Schenck, Adam Hilger, Bristol 1986 A. Yaouanc, P. Dalmas de Reotier, Oxford Univ. Press, 2011. - 486 p S.J. Blundell Contemporary Physics 40, 175 (1999) http://arxiv.org/abs/cond-mat/0207699 Some private notes at http://www.fis.unipr.it/~derenzi/dispense/pmwiki.php?n=MuSR.MuSR 12/05/2014 De Renzi - ISIS Muon Training 53
© Copyright 2026 Paperzz