Packing and Covering Triangles in Planar Graphs

Packing and Covering Triangles in Planar Graphs
Qing Cui1โˆ—
Penny Haxell2โ€ 
Will Ma2โ€ก
1
Department of Mathematics
Nanjing University of Aeronautics and Astronautics
Nanjing 210016, P. R. China
2
Department of Combinatorics and Optimization
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
Abstract
Tuza conjectured that if a simple graph ๐บ does not contain more than ๐‘˜ pairwise edgedisjoint triangles, then there exists a set of at most 2๐‘˜ edges that meets all triangles in ๐บ. It
has been shown that this conjecture is true for planar graphs and the bound is sharp. In this
paper, we characterize the set of extremal planar graphs.
Keywords: packing and covering; triangle; planar graph
AMS Subject Classi๏ฌcation: 05C70, 05C35
โˆ—
allen [email protected].
[email protected]; Partially supported by NSERC.
โ€ก
[email protected]; Partially supported by an NSERC Undergraduate Student Research Assistantship.
โ€ 
1
1
Introduction
We consider ๏ฌnite simple undirected graphs only. For a graph ๐บ, we use ๐‘‰ (๐บ) and ๐ธ(๐บ) to denote
the vertex set and edge set of ๐บ, respectively. A triangle packing in ๐บ is a set of pairwise edgedisjoint triangles. A triangle edge cover in ๐บ is a set of edges meeting all triangles. We denote by
๐œˆ(๐บ) the maximum cardinality of a triangle packing in ๐บ, and by ๐œ (๐บ) the minimum cardinality
of a triangle edge cover for ๐บ. It is clear that for every graph ๐บ we have ๐œˆ(๐บ) โ‰ค ๐œ (๐บ) โ‰ค 3๐œˆ(๐บ).
In [4], Tuza proposed the following conjecture.
Conjecture 1.1 For every graph ๐บ, ๐œ (๐บ) โ‰ค 2๐œˆ(๐บ).
Some partial results have been obtained for certain special classes of graphs. Tuza [5] proved
Conjecture 1.1 for planar graphs. Krivelevich [3] extended this result to ๐พ3,3 -free graphs (graphs
that do not contain a subdivision of ๐พ3,3 ). Haxell and Kohayakawa [2] showed that for tripartite
graphs ๐บ, ๐œ (๐บ) โ‰ค (2 โˆ’ ๐œ€)๐œˆ(๐บ), where ๐œ€ > 0.044. However, the original conjecture of Tuza is still
open. The unique nontrivial bound known [1] shows that ๐œ (๐บ) โ‰ค 66
23 ๐œˆ(๐บ) for every graph ๐บ. Note
that the inequality ๐œ (๐บ) โ‰ค 2๐œˆ(๐บ) is sharp for in๏ฌnitely many planar graphs ๐บ, since any planar
graph all of whose blocks are isomorphic to ๐พ4 or ๐พ2 reaches this bound. A planar graph ๐บ is
called extremal if it satis๏ฌes ๐œ (๐บ) = 2๐œˆ(๐บ).
In this paper, we shall construct a set of planar graphs ๐’ข (which will be de๏ฌned in Section 2)
and prove the following.
Theorem 1.2 A planar graph ๐บ is extremal if and only if ๐บ โˆˆ ๐’ข.
We conclude this section with some notation and terminology. For a graph ๐บ, an edge
๐‘’ โˆˆ ๐ธ(๐บ) is isolated if ๐‘’ is not contained in any triangle of ๐บ. (This de๏ฌnition is useful since
isolated edges never a๏ฌ€ect triangle packings and minimum triangle edge covers, and thus can
basically be ignored for our purposes.) An edge ๐‘’ of a triangle ๐‘‡ in ๐บ is an own-edge if ๐‘‡ is the
unique triangle in ๐บ containing ๐‘’.
We write ๐ด := ๐ต to rename ๐ต as ๐ด. For any graph ๐บ and any ๐‘… โІ ๐‘‰ (๐บ), we use ๐บ[๐‘…] to
denote the subgraph of ๐บ induced by ๐‘…. For any ๐‘† โІ ๐ธ(๐บ), de๏ฌne ๐บ โˆ’ ๐‘† to be the subgraph of
๐บ with vertex set ๐‘‰ (๐บ) and edge set ๐ธ(๐บ) โˆ’ ๐‘†. When ๐‘† = {๐‘ }, we simply write ๐บ โˆ’ ๐‘  instead
of ๐บ โˆ’ {๐‘ }. For any vertex ๐‘ฃ โˆˆ ๐‘‰ (๐บ), let ๐‘ (๐‘ฃ) be the set of neighbors of ๐‘ฃ in ๐บ, and let ๐‘‘(๐‘ฃ) be
the degree of ๐‘ฃ in ๐บ (then ๐‘‘(๐‘ฃ) = โˆฃ๐‘ (๐‘ฃ)โˆฃ). A vertex ๐‘ฃ of ๐บ is said to be isolated if ๐‘ฃ has degree 0
in ๐บ. We use ฮ”(๐บ) to denote the maximum degree of ๐บ.
2
The Graph Set ๐’ข
The aim of this section is to construct the set of planar graphs ๐’ข and prove some lemmas to be
used frequently in later proofs.
The graph set ๐’ข is de๏ฌned as follows. A planar graph ๐บ โˆˆ ๐’ข if and only if there exists a set
๐’ฎ of edge-disjoint ๐พ4 โ€™s in ๐บ such that
(1) each edge in ๐ธ(๐บ) is either isolated or is an edge of some ๐พ4 in ๐’ฎ,
(2) each triangle in ๐บ is contained in some ๐พ4 of ๐’ฎ.
2
It is easy to see that any planar graph ๐บ โˆˆ ๐’ข is extremal. Suppose โˆฃ๐’ฎโˆฃ = ๐‘˜, then ๐œˆ(๐บ) = ๐‘˜
and ๐œ (๐บ) = 2๐‘˜ (every ๐พ4 in ๐บ contributes a triangle for each maximum triangle packing and two
edges for each minimum triangle edge cover of ๐บ), and hence ๐บ is extremal.
The following two observations are immediate from the de๏ฌnition of ๐’ข.
Proposition 2.1 Let ๐บ โˆˆ ๐’ข, and let ๐‘’ โˆˆ ๐ธ(๐บ) be an edge that is not isolated. Then there exists
a minimum triangle edge cover in ๐บ containing ๐‘’.
Proposition 2.2 Let ๐บ โˆˆ ๐’ข, and let ๐‘’, ๐‘“ โˆˆ ๐ธ(๐บ) such that neither ๐‘’ nor ๐‘“ is an isolated edge
and ๐‘’, ๐‘“ belong to di๏ฌ€erent ๐พ4 โ€™s of ๐บ. Then there exists a minimum triangle edge cover in ๐บ
containing both ๐‘’ and ๐‘“ .
The following lemma was proved by Tuza in [5] when proving Conjecture 1.1 for planar graphs.
However, we include the proof for the convenience of the reader.
Lemma 2.3 Let ๐บ be a planar graph. Then ๐บ contains a vertex ๐‘ฃ such that ฮ”(๐บ[๐‘ (๐‘ฃ)]) โ‰ค 2.
Proof. Fix a planar embedding of ๐บ, we now introduce an algorithm for ๏ฌnding such a vertex ๐‘ฃ
in ๐บ.
Let ๐‘ฃ0 be an arbitrary vertex in ๐บ. If ๐‘ฃ0 satis๏ฌes the requirement, then we are done. So suppose
that ๐‘ฃ0 is not an appropriate choice for ๐‘ฃ. This means that there is a vertex ๐‘ฅ0 adjacent to ๐‘ฃ0
and having at least three common neighbors with ๐‘ฃ0 . Then by planarity, one of these common
neighbors, say ๐‘ฃ1 , must be strictly contained inside the triangle with vertex set {๐‘ฃ0 , ๐‘ฅ0 , ๐‘ฆ0 }, where
๐‘ฆ0 โˆ•= ๐‘ฃ1 is another common neighbor of ๐‘ฃ0 and ๐‘ฅ0 .
Our next candidate for ๐‘ฃ is ๐‘ฃ1 . If ๐‘ฃ1 does not satisfy the requirement then, in the same way as
before, we can ๏ฌnd a vertex ๐‘ฃ2 in ๐บ, and so on. If ๐บ does not contain the desired vertex ๐‘ฃ, then
we can obtain an in๏ฌnite sequence of vertices {๐‘ฃ๐‘– : ๐‘– โ‰ฅ 0}. Furthermore, from the construction of
the sequence, we have ๐‘ฃ๐‘– โˆ•= ๐‘ฃ๐‘— for all ๐‘–, ๐‘— โ‰ฅ 0 and ๐‘– โˆ•= ๐‘—. But this implies that โˆฃ๐‘‰ (๐บ)โˆฃ is in๏ฌnite, a
contradiction. Hence the assertion of the lemma holds.
Our ๏ฌnal lemma in this section deals with extremal planar graphs. A more general version
for 3-uniform hypergraphs can be found in [5].
Lemma 2.4 Let ๐บ be an extremal planar graph. Then each triangle in ๐บ contains at most one
own-edge.
Proof. Let ๐‘‡ := ๐‘Ž๐‘๐‘๐‘Ž be a triangle in ๐บ. Suppose to the contrary that the lemma is false and
assume without loss of generality that both ๐‘Ž๐‘ and ๐‘๐‘ are own-edges of ๐บ contained in the triangle
๐‘‡.
Consider ๐ป := ๐บ โˆ’ {๐‘Ž๐‘, ๐‘๐‘, ๐‘๐‘Ž}. Then ๐ป is a planar graph, and hence ๐œ (๐ป) โ‰ค 2๐œˆ(๐ป). Let
โ„ณ and ๐’ž be a maximum triangle packing and a minimum triangle edge cover in ๐ป, respectively.
Then โ„ณ โˆช {๐‘‡ } is a triangle packing in ๐บ, so ๐œˆ(๐ป) โ‰ค ๐œˆ(๐บ) โˆ’ 1. On the other hand, since both ๐‘Ž๐‘
and ๐‘๐‘ are own-edges of ๐บ, we see that ๐’ž โˆช {๐‘๐‘Ž} is a triangle edge cover in ๐บ. This shows that
๐œ (๐บ) โ‰ค ๐œ (๐ป) + 1. But then, ๐œ (๐บ) โ‰ค ๐œ (๐ป) + 1 โ‰ค 2๐œˆ(๐ป) + 1 โ‰ค 2(๐œˆ(๐บ) โˆ’ 1) + 1 < 2๐œˆ(๐บ), which
contradicts the assumption that ๐บ is an extremal planar graph.
3
3
Proof of the Main Result
In this section, we prove the main result of this paper.
In fact, we need only to show that any extremal planar graph belongs to ๐’ข. Suppose for a
contradiction that there exists some extremal planar graph which is not in ๐’ข. Let ๐บ be such an
extremal planar graph such that โˆฃ๐ธ(๐บ)โˆฃ is minimum, and subject to this, โˆฃ๐‘‰ (๐บ)โˆฃ is minimum.
Then by our choice of ๐บ, there exists neither an isolated edge nor an isolated vertex in ๐บ.
Moreover, any extremal planar graph ๐ป with โˆฃ๐ธ(๐ป)โˆฃ < โˆฃ๐ธ(๐บ)โˆฃ belongs to ๐’ข.
Let ๐‘ฃ be a vertex in ๐บ described in Lemma 2.3, and let ๐‘ := ๐บ[๐‘ (๐‘ฃ)]. Then by Lemma 2.3,
ฮ”(๐‘ ) โ‰ค 2. This implies that if ๐‘ is nonempty, then all the components of ๐‘ are paths, cycles
and isolated vertices.
We claim that ๐‘ contains no isolated vertex as a component. Otherwise, suppose that ๐‘ค is
an isolated vertex in ๐‘ . Then it is easy to see that ๐‘ฃ๐‘ค is an isolated edge in ๐บ, contradicting the
choice of ๐บ.
In the following arguments, we further show that ๐‘ must be empty.
Lemma 3.1 ๐‘ contains no path of odd length as a component.
๐‘ค1
๐‘ค2
๐‘ค3
๐‘ค4
๐‘ค1
๐‘ค2
๐‘ค3
๐‘ฃ
๐‘ฃ
(a)
(b)
๐‘ค4
Figure 1: Lemma 3.1 with ๐‘˜ = 2.
Proof. Suppose the assertion of the lemma is false and let ๐‘ƒ := ๐‘ค1 ๐‘ค2 . . . ๐‘ค2๐‘˜ be a path of length
2๐‘˜ โˆ’ 1 in ๐‘ (with ๐‘˜ โ‰ฅ 1).
Consider ๐ป := ๐บ โˆ’ ๐ธ(๐‘ƒ ) โˆ’ {๐‘ฃ๐‘ค๐‘– : 1 โ‰ค ๐‘– โ‰ค 2๐‘˜} (the edges we remove are the edges shown in
Fig. 1(a)). Then ๐ป is planar, and ๐œ (๐ป) โ‰ค 2๐œˆ(๐ป). Let โ„ณ and ๐’ž be a maximum triangle packing
and a minimum triangle edge cover in ๐ป, respectively. De๏ฌne ๐‘‡๐‘– := ๐‘ฃ๐‘ค2๐‘–โˆ’1 ๐‘ค2๐‘– ๐‘ฃ for each 1 โ‰ค ๐‘– โ‰ค ๐‘˜
(the thick edges shown in Fig. 1(a)). Then โ„ณ โˆช {๐‘‡๐‘– : 1 โ‰ค ๐‘– โ‰ค ๐‘˜} is a triangle packing in ๐บ, and
hence ๐œˆ(๐ป) โ‰ค ๐œˆ(๐บ) โˆ’ ๐‘˜. Furthermore, since ๐’ž โˆช ๐ธ(๐‘ƒ ) (the edges we add to ๐’ž are the dashed edges
shown in Fig. 1(b)) is a triangle edge cover in ๐บ, we know that ๐œ (๐บ) โ‰ค ๐œ (๐ป) + (2๐‘˜ โˆ’ 1). But now,
by combining these three inequalities, we have ๐œ (๐บ) โ‰ค ๐œ (๐ป) + (2๐‘˜ โˆ’ 1) โ‰ค 2๐œˆ(๐ป) + (2๐‘˜ โˆ’ 1) โ‰ค
2(๐œˆ(๐บ) โˆ’ ๐‘˜) + (2๐‘˜ โˆ’ 1) < 2๐œˆ(๐บ), which contradicts the assumption that ๐บ is extremal.
Lemma 3.2 ๐‘ contains no path of even length as a component.
Proof. Suppose to the contrary that the lemma is false and let ๐‘ƒ := ๐‘ค1 ๐‘ค2 . . . ๐‘ค2๐‘˜+1 be a path of
length 2๐‘˜ in ๐‘ (with ๐‘˜ โ‰ฅ 1).
Let ๐ป := ๐บ โˆ’ {๐‘ค๐‘– ๐‘ค๐‘–+1 : 1 โ‰ค ๐‘– โ‰ค 2๐‘˜ โˆ’ 1} โˆ’ {๐‘ฃ๐‘ค๐‘– : 1 โ‰ค ๐‘– โ‰ค 2๐‘˜ + 1} (note that we do not remove
the edge ๐‘ค2๐‘˜ ๐‘ค2๐‘˜+1 ). Since ๐ป is planar, we have ๐œ (๐ป) โ‰ค 2๐œˆ(๐ป). Let โ„ณ and ๐’ž be a maximum
triangle packing and a minimum triangle edge cover in ๐ป, respectively. De๏ฌne ๐‘‡๐‘– := ๐‘ฃ๐‘ค2๐‘–โˆ’1 ๐‘ค2๐‘– ๐‘ฃ
for each 1 โ‰ค ๐‘– โ‰ค ๐‘˜. Then โ„ณ โˆช {๐‘‡๐‘– : 1 โ‰ค ๐‘– โ‰ค ๐‘˜} is a triangle packing in ๐บ, and ๐œˆ(๐ป) โ‰ค ๐œˆ(๐บ) โˆ’ ๐‘˜.
4
On the other hand, it is easy to check that ๐’ž โˆช ๐ธ(๐‘ƒ ) is a triangle edge cover in ๐บ. This implies
that ๐œ (๐บ) โ‰ค ๐œ (๐ป) + 2๐‘˜. Now, ๐œ (๐บ) โ‰ค ๐œ (๐ป) + 2๐‘˜ โ‰ค 2๐œˆ(๐ป) + 2๐‘˜ โ‰ค 2(๐œˆ(๐บ) โˆ’ ๐‘˜) + 2๐‘˜ = 2๐œˆ(๐บ).
Since ๐บ is an extremal planar graph, we see that ๐œ (๐บ) = ๐œ (๐ป) + 2๐‘˜, ๐œ (๐ป) = 2๐œˆ(๐ป), and hence
๐ป is extremal. Moreover, because โˆฃ๐ธ(๐ป)โˆฃ < โˆฃ๐ธ(๐บ)โˆฃ, by our choice of ๐บ, we have ๐ป โˆˆ ๐’ข.
We claim that ๐‘ค2๐‘˜ ๐‘ค2๐‘˜+1 is not an isolated edge in ๐ป. Suppose this is not true and assume that
๐‘ค2๐‘˜ ๐‘ค2๐‘˜+1 is an isolated edge in ๐ป. This means that ๐‘ค2๐‘˜ ๐‘ค2๐‘˜+1 is only contained in the triangle
๐‘ฃ๐‘ค2๐‘˜ ๐‘ค2๐‘˜+1 ๐‘ฃ of ๐บ. So ๐‘ค2๐‘˜ ๐‘ค2๐‘˜+1 is an own-edge in ๐บ. But since ๐‘ฃ๐‘ค2๐‘˜+1 is also an own-edge of ๐บ
contained in the triangle ๐‘ฃ๐‘ค2๐‘˜ ๐‘ค2๐‘˜+1 ๐‘ฃ, we know that ๐‘ฃ๐‘ค2๐‘˜ ๐‘ค2๐‘˜+1 ๐‘ฃ contains at least two own-edges
of ๐บ, which contradicts Lemma 2.4. Hence the claim holds.
Then by Proposition 2.1, there exists a minimum triangle edge cover ๐’ž โˆ— in ๐ป such that
๐‘ค2๐‘˜ ๐‘ค2๐‘˜+1 โˆˆ ๐’ž โˆ— . But then, ๐’ž โˆ— โˆช {๐‘ค๐‘– ๐‘ค๐‘–+1 : 1 โ‰ค ๐‘– โ‰ค 2๐‘˜ โˆ’ 1} is a triangle edge cover in ๐บ of size
๐œ (๐ป) + (2๐‘˜ โˆ’ 1), contradicting the fact that ๐œ (๐บ) = ๐œ (๐ป) + 2๐‘˜. This completes the proof of the
lemma.
Lemma 3.3 ๐‘ contains no cycle of even length as a component.
๐‘ค1
๐‘ค2
๐‘ค1
๐‘ค3
(a)
๐‘ค1
๐‘ฃ
๐‘ฃ
๐‘ค4
๐‘ค2
๐‘ค4
๐‘ค2
๐‘ฃ
๐‘ค3
๐‘ค4
(b)
๐‘ค3
(c)
Figure 2: Lemma 3.3 with ๐‘˜ = 2.
Proof. Suppose for a contradiction that ๐ถ := ๐‘ค1 ๐‘ค2 . . . ๐‘ค2๐‘˜ ๐‘ค1 is a cycle of length 2๐‘˜ in ๐‘ (with
๐‘˜ โ‰ฅ 2).
We claim that ๐‘ค๐‘– ๐‘ค๐‘–+1 is an own-edge of ๐บ contained in the triangle ๐‘ฃ๐‘ค๐‘– ๐‘ค๐‘–+1 ๐‘ฃ for each 1 โ‰ค
๐‘– โ‰ค 2๐‘˜, where ๐‘ค2๐‘˜+1 := ๐‘ค1 . Suppose to the contrary that this is not true and assume without
loss of generality that ๐‘ค2 ๐‘ค3 is not an own-edge. Consider ๐ป := (๐บ โˆ’ ๐‘ค1 ๐‘ค2 ) โˆ’ {๐‘ค๐‘– ๐‘ค๐‘–+1 : 3 โ‰ค
๐‘– โ‰ค 2๐‘˜} โˆ’ {๐‘ฃ๐‘ค๐‘– : 1 โ‰ค ๐‘– โ‰ค 2๐‘˜} (the edges we remove are the edges shown in Fig. 2(a)). Then ๐ป
is planar, and ๐œ (๐ป) โ‰ค 2๐œˆ(๐ป). Let โ„ณ and ๐’ž be a maximum triangle packing and a minimum
triangle edge cover in ๐ป, respectively. De๏ฌne ๐‘‡๐‘– := ๐‘ฃ๐‘ค2๐‘–โˆ’1 ๐‘ค2๐‘– ๐‘ฃ for each 1 โ‰ค ๐‘– โ‰ค ๐‘˜ (the thick
edges shown in Fig. 2(a)). Then โ„ณ โˆช {๐‘‡๐‘– : 1 โ‰ค ๐‘– โ‰ค ๐‘˜} is a triangle packing in ๐บ, and hence
๐œˆ(๐ป) โ‰ค ๐œˆ(๐บ) โˆ’ ๐‘˜. Further, since ๐’ž โˆช ๐ธ(๐ถ) (the edges we add to ๐’ž are the dashed edges shown
in Fig. 2(b)) is a triangle edge cover in ๐บ, we have ๐œ (๐บ) โ‰ค ๐œ (๐ป) + 2๐‘˜. Now, by combining these
three inequalities, we deduce that ๐œ (๐บ) โ‰ค ๐œ (๐ป) + 2๐‘˜ โ‰ค 2๐œˆ(๐ป) + 2๐‘˜ โ‰ค 2(๐œˆ(๐บ) โˆ’ ๐‘˜) + 2๐‘˜ = 2๐œˆ(๐บ).
Since ๐บ is extremal, we see that ๐œ (๐บ) = ๐œ (๐ป) + 2๐‘˜, ๐œ (๐ป) = 2๐œˆ(๐ป), and hence ๐ป is also an
extremal planar graph. Then it follows from โˆฃ๐ธ(๐ป)โˆฃ < โˆฃ๐ธ(๐บ)โˆฃ that ๐ป โˆˆ ๐’ข. Since we assume that
๐‘ค2 ๐‘ค3 is not an own-edge of ๐บ contained in the triangle ๐‘ฃ๐‘ค2 ๐‘ค3 ๐‘ฃ, ๐‘ค2 ๐‘ค3 is not an isolated edge
in ๐ป. Then by Proposition 2.1, there exists a minimum triangle edge cover ๐’ž โˆ— in ๐ป such that
๐‘ค2 ๐‘ค3 โˆˆ ๐’ž โˆ— . But now, ๐’ž โˆ— โˆช {๐‘ค1 ๐‘ค2 } โˆช {๐‘ค๐‘– ๐‘ค๐‘–+1 : 3 โ‰ค ๐‘– โ‰ค 2๐‘˜} is a triangle edge cover in ๐บ of size
๐œ (๐ป) + (2๐‘˜ โˆ’ 1), which contradicts the fact that ๐œ (๐บ) = ๐œ (๐ป) + 2๐‘˜. This proves the claim.
5
We now consider ๐ป โ€ฒ := ๐บ โˆ’ ๐ธ(๐ถ) โˆ’ {๐‘ฃ๐‘ค๐‘– : 1 โ‰ค ๐‘– โ‰ค 2๐‘˜}. Since ๐ป โ€ฒ is planar, ๐œ (๐ป โ€ฒ ) โ‰ค
2๐œˆ(๐ป โ€ฒ ). Let โ„ณโ€ฒ and ๐’ž โ€ฒ be a maximum triangle packing and a minimum triangle edge cover in
๐ป โ€ฒ , respectively. Then โ„ณโ€ฒ โˆช {๐‘‡๐‘– : 1 โ‰ค ๐‘– โ‰ค ๐‘˜} is a triangle packing in ๐บ, and ๐œˆ(๐ป โ€ฒ ) โ‰ค ๐œˆ(๐บ) โˆ’ ๐‘˜.
On the other hand, since ๐‘ค๐‘– ๐‘ค๐‘–+1 is an own-edge of ๐บ contained in the triangle ๐‘ฃ๐‘ค๐‘– ๐‘ค๐‘–+1 ๐‘ฃ for
each 1 โ‰ค ๐‘– โ‰ค 2๐‘˜, it is easy to see that ๐’ž โ€ฒ โˆช {๐‘ฃ๐‘ค2๐‘– : 1 โ‰ค ๐‘– โ‰ค ๐‘˜} (the edges we add to ๐’ž โ€ฒ are the
dashed edges shown in Fig. 2(c)) is a triangle edge cover in ๐บ. So ๐œ (๐บ) โ‰ค ๐œ (๐ป โ€ฒ ) + ๐‘˜. But then,
๐œ (๐บ) โ‰ค ๐œ (๐ป โ€ฒ ) + ๐‘˜ โ‰ค 2๐œˆ(๐ป โ€ฒ ) + ๐‘˜ โ‰ค 2(๐œˆ(๐บ) โˆ’ ๐‘˜) + ๐‘˜ < 2๐œˆ(๐บ), contradicting the assumption that
๐บ is an extremal planar graph. Hence the assertion of the lemma holds.
Lemma 3.4 ๐‘ contains no cycle of odd length โ‰ฅ 5 as a component.
๐‘ค2
๐‘ค2
๐‘ค3
๐‘ค1
๐‘ค3
๐‘ค1
๐‘ฃ
๐‘ค5
๐‘ค3
๐‘ค1
๐‘ฃ
๐‘ค4
(a)
๐‘ค2
๐‘ค5
๐‘ฃ
๐‘ค4
(b)
๐‘ค5
๐‘ค4
(c)
Figure 3: Lemma 3.4 with ๐‘˜ = 2.
Proof. Suppose for a contradiction that ๐ถ := ๐‘ค1 ๐‘ค2 . . . ๐‘ค2๐‘˜+1 ๐‘ค1 is a cycle of length 2๐‘˜ + 1 in ๐‘
(with ๐‘˜ โ‰ฅ 2).
We claim that ๐‘ค๐‘– ๐‘ค๐‘–+1 is an own-edge of ๐บ contained in the triangle ๐‘ฃ๐‘ค๐‘– ๐‘ค๐‘–+1 ๐‘ฃ for each 1 โ‰ค ๐‘– โ‰ค
2๐‘˜ + 1, where ๐‘ค2๐‘˜+2 := ๐‘ค1 . Suppose this is not true and assume without loss of generality that
๐‘ค2 ๐‘ค3 is not an own-edge. Let ๐ป := (๐บโˆ’๐‘ค1 ๐‘ค2 )โˆ’{๐‘ค๐‘– ๐‘ค๐‘–+1 : 3 โ‰ค ๐‘– โ‰ค 2๐‘˜โˆ’1}โˆ’{๐‘ฃ๐‘ค๐‘– : 1 โ‰ค ๐‘– โ‰ค 2๐‘˜+1}
(the edges we remove are the edges shown in Fig. 3(a)). Since ๐ป is planar, ๐œ (๐ป) โ‰ค 2๐œˆ(๐ป). Let
โ„ณ and ๐’ž be a maximum triangle packing and a minimum triangle edge cover in ๐ป, respectively.
De๏ฌne ๐‘‡๐‘– := ๐‘ฃ๐‘ค2๐‘–โˆ’1 ๐‘ค2๐‘– ๐‘ฃ for each 1 โ‰ค ๐‘– โ‰ค ๐‘˜ (the thick edges shown in Fig. 3(a)). Then โ„ณ โˆช {๐‘‡๐‘– :
1 โ‰ค ๐‘– โ‰ค ๐‘˜} is a triangle packing in ๐บ, and hence ๐œˆ(๐ป) โ‰ค ๐œˆ(๐บ) โˆ’ ๐‘˜. On the other hand, since
๐’ž โˆช {๐‘ฃ๐‘ค2๐‘˜+1 } โˆช {๐‘ค๐‘– ๐‘ค๐‘–+1 : 1 โ‰ค ๐‘– โ‰ค 2๐‘˜ โˆ’ 1} (the edges we add to ๐’ž are the dashed edges shown
in Fig. 3(b)) is a triangle edge cover in ๐บ, we know that ๐œ (๐บ) โ‰ค ๐œ (๐ป) + 2๐‘˜. By combining
these three inequalities, we have ๐œ (๐บ) โ‰ค ๐œ (๐ป) + 2๐‘˜ โ‰ค 2๐œˆ(๐ป) + 2๐‘˜ โ‰ค 2(๐œˆ(๐บ) โˆ’ ๐‘˜) + 2๐‘˜ = 2๐œˆ(๐บ).
Since ๐บ is an extremal planar graph, we conclude that ๐œ (๐บ) = ๐œ (๐ป) + 2๐‘˜, ๐œ (๐ป) = 2๐œˆ(๐ป), and
hence ๐ป is also extremal. Moreover, because โˆฃ๐ธ(๐ป)โˆฃ < โˆฃ๐ธ(๐บ)โˆฃ, by our choice of ๐บ, we have
๐ป โˆˆ ๐’ข. Since ๐‘ค2 ๐‘ค3 is not an own-edge of ๐บ, ๐‘ค2 ๐‘ค3 is not an isolated edge in ๐ป. Then by
Proposition 2.1, there exists a minimum triangle edge cover ๐’ž โˆ— in ๐ป such that ๐‘ค2 ๐‘ค3 โˆˆ ๐’ž โˆ— . Now,
๐’ž โˆ— โˆช{๐‘ค1 ๐‘ค2 , ๐‘ฃ๐‘ค2๐‘˜+1 }โˆช{๐‘ค๐‘– ๐‘ค๐‘–+1 : 3 โ‰ค ๐‘– โ‰ค 2๐‘˜โˆ’1} is a triangle edge cover in ๐บ of size ๐œ (๐ป)+(2๐‘˜โˆ’1),
contradicting the fact that ๐œ (๐บ) = ๐œ (๐ป) + 2๐‘˜. Hence the claim holds.
De๏ฌne ๐ป โ€ฒ := ๐บ โˆ’ ๐ธ(๐ถ) โˆ’ {๐‘ฃ๐‘ค๐‘– : 1 โ‰ค ๐‘– โ‰ค 2๐‘˜ + 1}. Then ๐ป โ€ฒ is planar, and hence ๐œ (๐ป โ€ฒ ) โ‰ค
2๐œˆ(๐ป โ€ฒ ). Let โ„ณโ€ฒ and ๐’ž โ€ฒ be a maximum triangle packing and a minimum triangle edge cover in
๐ป โ€ฒ , respectively. Then โ„ณโ€ฒ โˆช {๐‘‡๐‘– : 1 โ‰ค ๐‘– โ‰ค ๐‘˜} is a triangle packing in ๐บ, and ๐œˆ(๐ป โ€ฒ ) โ‰ค ๐œˆ(๐บ) โˆ’ ๐‘˜.
Furthermore, since ๐‘ค๐‘– ๐‘ค๐‘–+1 is an own-edge of ๐บ contained in the triangle ๐‘ฃ๐‘ค๐‘– ๐‘ค๐‘–+1 ๐‘ฃ for each
1 โ‰ค ๐‘– โ‰ค 2๐‘˜+1, we see that ๐’ž โ€ฒ โˆช{๐‘ฃ๐‘ค2๐‘– : 1 โ‰ค ๐‘– โ‰ค ๐‘˜}โˆช{๐‘ฃ๐‘ค2๐‘˜+1 } (the edges we add to ๐’ž โ€ฒ are the dashed
6
edges shown in Fig. 3(c)) is a triangle edge cover in ๐บ. This shows that ๐œ (๐บ) โ‰ค ๐œ (๐ป โ€ฒ ) + (๐‘˜ + 1).
But now, ๐œ (๐บ) โ‰ค ๐œ (๐ป โ€ฒ ) + (๐‘˜ + 1) โ‰ค 2๐œˆ(๐ป โ€ฒ ) + (๐‘˜ + 1) โ‰ค 2(๐œˆ(๐บ) โˆ’ ๐‘˜) + (๐‘˜ + 1) < 2๐œˆ(๐บ) (since we
assume ๐‘˜ โ‰ฅ 2), which contradicts the assumption that ๐บ is extremal. This completes the proof
of the lemma.
Lemma 3.5 ๐‘ contains no triangle as a component.
Proof. Suppose the assertion of the lemma is false and let ๐‘‡ := ๐‘Ž๐‘๐‘๐‘Ž be a triangle in ๐‘ .
Consider ๐ป := ๐บ โˆ’ {๐‘Ž๐‘, ๐‘ฃ๐‘Ž, ๐‘ฃ๐‘, ๐‘ฃ๐‘}. Then ๐ป is planar, and ๐œ (๐ป) โ‰ค 2๐œˆ(๐ป). Let โ„ณ and
๐’ž be a maximum triangle packing and a minimum triangle edge cover in ๐ป, respectively. Then
โ„ณโˆช{๐‘ฃ๐‘Ž๐‘๐‘ฃ} is a triangle packing in ๐บ, which means that ๐œˆ(๐ป) โ‰ค ๐œˆ(๐บ)โˆ’1. On the other hand, it is
easy to see that ๐’žโˆช{๐‘Ž๐‘, ๐‘ฃ๐‘} is a triangle edge cover in ๐บ, and hence ๐œ (๐บ) โ‰ค ๐œ (๐ป)+2. By combining
these three inequalities, we have ๐œ (๐บ) โ‰ค ๐œ (๐ป) + 2 โ‰ค 2๐œˆ(๐ป) + 2 โ‰ค 2(๐œˆ(๐บ) โˆ’ 1) + 2 = 2๐œˆ(๐บ). Since
๐บ is extremal, we deduce that ๐œ (๐บ) = ๐œ (๐ป) + 2, ๐œ (๐ป) = 2๐œˆ(๐ป), and hence ๐ป is an extremal
planar graph. Then it follows from โˆฃ๐ธ(๐ป)โˆฃ < โˆฃ๐ธ(๐บ)โˆฃ that ๐ป โˆˆ ๐’ข.
We claim that at least one edge of {๐‘๐‘, ๐‘๐‘Ž} is an isolated edge in ๐ป. Suppose to the contrary
that neither ๐‘๐‘ nor ๐‘๐‘Ž is isolated in ๐ป. Since ๐ป โˆˆ ๐’ข and ๐‘Ž๐‘ โˆˆ
/ ๐ธ(๐ป), we see that ๐‘๐‘ and ๐‘๐‘Ž are
contained in di๏ฌ€erent ๐พ4 โ€™s of ๐ป. Then by Proposition 2.2, there exists a minimum triangle edge
cover ๐’ž โˆ— in ๐ป such that {๐‘๐‘, ๐‘๐‘Ž} โІ ๐’ž โˆ— . But then, ๐’ž โˆ— โˆช {๐‘Ž๐‘} is a triangle edge cover in ๐บ of size
๐œ (๐ป) + 1, which contradicts the fact that ๐œ (๐บ) = ๐œ (๐ป) + 2. This proves the claim.
Without loss of generality, we may assume that ๐‘๐‘ is an isolated edge in ๐ป. Then ๐‘๐‘ is only
contained in the triangles {๐‘‡, ๐‘ฃ๐‘๐‘๐‘ฃ} of ๐บ. Let ๐ป โ€ฒ := ๐บ โˆ’ {๐‘๐‘, ๐‘ฃ๐‘Ž, ๐‘ฃ๐‘, ๐‘ฃ๐‘}. By the same argument
as above, we can prove that ๐œ (๐บ) = ๐œ (๐ป โ€ฒ ) + 2, ๐ป โ€ฒ is also extremal, and ๐ป โ€ฒ โˆˆ ๐’ข.
We further claim that both ๐‘Ž๐‘ and ๐‘๐‘Ž are isolated in ๐ป โ€ฒ . For otherwise, we may assume by
symmetry that ๐‘Ž๐‘ is not an isolated edge in ๐ป โ€ฒ . Then by Proposition 2.1, there exists a minimum
triangle edge cover ๐’ž โ€ฒ in ๐ป โ€ฒ such that ๐‘Ž๐‘ โˆˆ ๐’ž โ€ฒ . But now, ๐’ž โ€ฒ โˆช {๐‘ฃ๐‘} is a triangle edge cover in ๐บ of
size ๐œ (๐ป โ€ฒ ) + 1 (since ๐‘๐‘ is only contained in the triangles {๐‘‡, ๐‘ฃ๐‘๐‘๐‘ฃ} of ๐บ), contradicting the fact
that ๐œ (๐บ) = ๐œ (๐ป โ€ฒ ) + 2. Hence the claim holds.
We now consider ๐ฝ := ๐ป โ€ฒ โˆ’ {๐‘Ž๐‘, ๐‘๐‘Ž}. Since ๐ป โ€ฒ โˆˆ ๐’ข and both ๐‘Ž๐‘ and ๐‘๐‘Ž are isolated in ๐ป โ€ฒ ,
we have ๐ฝ โˆˆ ๐’ข. It is easy to check that the roles of ๐‘Ž๐‘ and ๐‘๐‘Ž are exactly the same as ๐‘๐‘ in ๐บ,
that is, ๐‘Ž๐‘ is only contained in the triangles {๐‘‡, ๐‘ฃ๐‘Ž๐‘๐‘ฃ} and ๐‘๐‘Ž is only contained in the triangles
{๐‘‡, ๐‘ฃ๐‘๐‘Ž๐‘ฃ} of ๐บ. Note that ๐ฝ = ๐บ โˆ’ {๐‘Ž๐‘, ๐‘๐‘, ๐‘๐‘Ž, ๐‘ฃ๐‘Ž, ๐‘ฃ๐‘, ๐‘ฃ๐‘}, we conclude that ๐บ is also an extremal
planar graph in ๐’ข, a contradiction.
We can now prove Theorem 1.2. Since ๐‘ contains no isolated vertex as a component and by
Lemmas 3.1, 3.2, 3.3, 3.4 and 3.5, we know that ๐‘ must be empty. But then, ๐‘ฃ is an isolated
vertex in ๐บ, which contradicts the choice of ๐บ. This completes the proof of the theorem.
References
[1] P. E. Haxell, Packing and covering triangles in graphs, Discrete Math. 195 (1999) 251โ€“254.
[2] P. E. Haxell and Y. Kohayakawa, Packing and covering triangles in tripartite graphs, Graphs
Combin. 14 (1998) 1โ€“10.
[3] M. Krivelevich, On a conjecture of Tuza about packing and covering of triangles, Discrete
Math. 142 (1995) 281โ€“286.
7
[4] Zs. Tuza, Conjecture, Finite and In๏ฌnite Sets, Eger, Hungary 1981, A. Hajnal, L. Lovaฬsz,
V. T. Soฬs (Eds.), Proc. Colloq. Math. Soc. J. Bolyai, Vol. 37, North-Holland, Amsterdam,
(1984), 888.
[5] Zs. Tuza, A conjecture on triangles of graphs, Graphs Combin. 6 (1990) 373โ€“380.
8