Proving Fundamental Trig Identities 1. Some basics: . Inverse Ratios 1 1 1 csc θ = , sec θ = , tan θ = sin θ cosθ cot θ Some handy translations/reflections (there are many more) cos ( −θ ) = cosθ , sin ( −θ ) = − sin θ π⎞ π⎞ ⎛ ⎛ sin ⎜ θ + ⎟ = cosθ , sin ⎜ θ − ⎟ = − cosθ ⎝ ⎝ 2⎠ 2⎠ π⎞ π⎞ ⎛ ⎛ cos ⎜ θ − ⎟ = sin θ , cos ⎜ θ + ⎟ = − sin θ ⎝ ⎝ 2⎠ 2⎠ 2. (a) Prove tan θ = (b) Prove the Pythagorean identities sin θ cosθ cos 2 θ + sin 2 θ = 1 1 + tan 2 θ = sec 2 θ 1 + cot 2 θ = csc 2 θ 3. Prove cos( A − B) = cos Acos B + sin Asin B Proof using distance between 2 points Let s = A − B diagram 1: A: cos A,sin A , B: cos B,sin B ( ) ( diagram 2: C: (cos s,sin s ) , D: (1, 0 ) ) ( c o sα , s i nα) 1 1 (cos(s)s,sin(s)) ( c o sβ , s i nβ) 0.5 0.5 α s -1 AB = CD (1,0) s β 1 -1 1 -0.5 -0.5 -1 -1 4. Prove cos( A + B) = cos Acos B − sin Asin B Proof using cosθ = cos ( −θ ) ,sin θ = − sin ( −θ ) 5. Prove sin( A + B) = sin Acos B + cos Asin B and sin( A − B) = sin Acos B − cos Asin B Proof using cosθ = cos ( −θ ) ,sin θ = − sin ( −θ ) π⎞ π⎞ ⎛ ⎛ cos ⎜ θ − ⎟ = sin θ , cos ⎜ θ + ⎟ = − sin θ ⎝ ⎝ 2⎠ 2⎠ 6. Prove trigonometric identities for tan ( A ± B ) , sin(2θ ) , cos(2θ ) and tan ( 2θ ) . (check them in your formula booklet)
© Copyright 2025 Paperzz