Converting to logs • Example: 16 = 4x Converting to exponents • Example: 3 = log4x • Example: 17 = 3x • Example: 4 = log5x • Example: 183 = ex • Example: lnx = 2 Change of Base Formula Allows us to rewrite logs in terms of base 10 or e so we can calculate the value of the log. change of base formula : log a x = log x log a ln x for base e : log a x = ln a logb x logb a for base 10 : log a x = Properties of Logs log10= log10x= log1= 10logx = lne= lnex= ln1= elnx = Example: Find the value log428 Condensing Log Expressions Example: condense: log5x - log5y Example: Condense: 3lnx + 4 ln(y+4) Expanding Log Expressions • Use the properties of logs to rewrite one log expression into multiple log terms. example: Expand log812y example : expand ln x3 y z6 1 Solving exponential Equations x 1. ⎛1⎞ 5 ⎜ ⎟ = 64 ⎝4⎠ 2. 6e 2 x + 10 = 46 3. 10e − x + 45 = 83 Solving Log Equations Example 1: log(4x + 2) – log(x – 1) = 1 Example 2: ln(x – 2) + ln(2x – 3) = 2lnx Interest Example r • Compound interest: A = P ⎛⎜1 + ⎞⎟ ⎝ k⎠ kt How long will it take for an investment of $15,000 to grow to $27,000 if interest is compounded quarterly with a 7.5% interest rate? • Continuously Compounded interest: A=Pert A: final amount P: principal r: interest rate k: number of payments per year t: number of years How long will it take if the interest is compounded continuously? Graphs Transformations 6 6 5 5 4 4 y = 2x y = 2x+2 3 2 3 2 1 1 −7 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 6 −1 −1 y= 1 2 x 6 6 1 y = 2i 2 5 4 3 x 5 4 3 2 2 1 −7 −6 −5 −4 −3 −2 −1 1 1 −1 2 3 4 5 6 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 −1 2 Transformations 1 −7 y= −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 −1 -2x −2 −3 −4 −5 −6 x y= 4 1 −3 2 3 2 1 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 −1 −2 −3 −4 3
© Copyright 2025 Paperzz