Wright State University CORE Scholar Physics Faculty Publications Physics 1998 Solar Cycle Variability of Hot Oxygen Atoms at Mars Jhoon Kim Andrew F. Nagy Jane L. Fox Wright State University - Main Campus, [email protected] Thomas E. Cravens Follow this and additional works at: http://corescholar.libraries.wright.edu/physics Part of the Astrophysics and Astronomy Commons, and the Physics Commons Repository Citation Kim, J., Nagy, A. F., Fox, J. L., & Cravens, T. E. (1998). Solar Cycle Variability of Hot Oxygen Atoms at Mars. Journal of Geophysical Research: Space Physics, 103 (A12), 29339-29342. http://corescholar.libraries.wright.edu/physics/439 This Article is brought to you for free and open access by the Physics at CORE Scholar. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. JOURNAL OF GEOPHYSICALRESEARCH,VOL. 103,NO. A12, PAGES29,339-29,342, DECEMBER 1, 1998 Solar cycle variability of hot oxygenatoms at Mars Jhoon Kim,1Andrew F. Nagy, 2JaneL. Fox,3 andThomas E. Cravens 4 Abstract.Thepopulation of hotoxygen atomsin theMartianexosphere isreexamined using newlycalculated hotO production ratesforbothlowandhighsolarcycleconditions. Thehot oxygen production rates areassumed toresult fromthedissociative recombination ofO• ions. Thesecalculations takeintoaccount thecalculated vibrational distribution of O• andthenew measured branching ratios.Furthermore, these calculations alsoconsider thevariation of thedissociative recombination crosssection withtherelativespeedof theparticipating ionsandelec- trons,therotational energy of the O• ions,andthespread of theionandelectron velocities. These production rates werenextused inatwo-stream model toobtain theenergy dependent fluxof thehotoxygen atoms asa function ofaltitude. Finally,thecalculated fluxattheexobase wasinputintoanexosphere model, based onLiouville's theorem, tocalculate thehotoxygen densities asa functionof altitudein theexosphere andtheresulting escape flux. It wasfoundthathotoxy- gen densities vary significantly over thesolar cycle; thecalculated densities vary from about 2x103 to6x103 cm-3atanaltitude of 1000km.Theescape fluxalsovaries fromabout 3x106 to9x106 cm-2 s-1. Expressmissionsare creatingnew interestin the upperatmosphere andexosphere of Mars. Thispaperdescribes theresults of new calculations of the hot oxygen density at Mars for low The distribution of nonthermal atmosphericconstituents and high solar activity conditions. andtheirescapeareimportantfor a numberof differentreasons, suchas atmospheric evolutionand the interactionof the nonmagneticplanetswith the solarwind. For Venusit hasbeen 2. Model Description well established by both observations [Nagyet al., 1981] and theoretical calculations[Nagy et al., 1981; McElroy et al., Potentialsourcesof hot oxygenat Mars are the dissociative 1982; Nagy and Cravens,1988;Nagyet al., 1990] that hot recombination of O• andthecharge exchange reactions of O+ oxygenis an important constituent in theexosphere. McElroy ions with H and O. However, it has been demonstratedthat for 1. Introduction [1972]suggested thata hotoxygen population islikelytobe Venus, Earth, andMars,thedominant source isdissociative represent around Mars.Since thisearlysuggestion a number of combination [Nagy andCravens, 1988; Nagyetal.,1990; J. other theoretical model calculations [Nagy andCravens, 1988;Kim,1991'Gerard etal.,1995; Richards etal.,1994; Hickey Nagyetal.,1990; Ip, 1990; Lainruer andBauer, 1991]ofhot etal.,1995], andtherefore inthisworkit istheonlysource to oxygen andhydrogen populations havebeenpublished, show-beconsidered. Richards etal. [1994]andHickey etal. [1995] ingthatwhilehotoxygen is expected to beanimportant con- havedrawnattention to othersources of thehotO corona for stituentin the Martian exosphere, hot oxygenis not the major the terrestrialcase. Most importantamongthemare quenching constituent over any altituderegion. However,no observation andother reactions of metastable species, including O(1D), of the hot oxygenpopulationis availableto date. The pres- N(2D)andO+(2D).We havenotincluded thesesources herebut ence of an extendedneutralcoronaplays an importantrole in will include them and dissociativerecombinationof NO+ in a massloadingand slowingdownthe solarwind at Venusand morecomplete calculation to be reported in thefuture. Mars. Recent MHD model calculations have shown that mass We havecomputed thenascent velocitydistribution of theO loadingof the solarwind by hot oxygenis importantandis atomsproduced in dissociative recombination, by combining a necessaryto explain the observedbow shocklocationsat modelof thevibrational distribution of O• withthebranching Venus and Mars [Bauskeet al., 1998a,b]. ratiosfor the differentpotentialchannelsindicatedin (1), as The Mars Global Surveyor (MGS), Nozomi, and Mars measured by Kella et al. [1997]: O•+e-->O(3p)+ O(3P)+[6.99 eV](0.22) 1Space Division,KoreanAerospace Research Institute,Taejon, Korea. -->O (3p)+ O (1D)+[5.02 eV] (0.42) 2Departmentof Atmospheric, Oceanicand SpaceSciences, Universityof Michigan,Ann Arbor. 3Institutefor TerrestrialandPlanetaryAtmospheres, StateUniversity of New York at StonyBrook,StonyBrook. -->O (1D)+ O (1D)+[3.06 eV] (0.31) -•O(3p) + O(1S)+[2.80eV] (<0.01) 4Department of Physicsand Astronomy, Universityof Kansas, -->O(1D)+ O (1S)+[0.84eV] (0.05) Lawrence. Copyfight 1998bytheAmerican Geophysical Union. Papernumber98JA02727. 0148-0227/98/98JA-02727,$09.00 (1) wherethe squarebrackets denotetheexcess energies andthe roundbracketsshowthe branchingratios. We havecarriedout Monte Carlo calculationsin which the rotationalenergyof the 29,339 29,340 KIM ET AL.: BRIEF REPORT ion and the initial velocities of the ion and electron are chosen from amonga distributioncharacteristicof the ion and electron temperatures. Calculationswere carried out for conditionsappropriate to the altitude range in question every 10 km from 130 to 290 km, and the results were interpolated linearly. Furtherdetailsmay be foundin the work of Fox and Hac [1997]. This calculationis similar to that carried out by Gerard et al. [1995], who studiedthe effect of the additionalsourcesof hot O ' proposedby Richardset al. [ 1994] andHickey et al. [ 1995] on the terrestrial hot oxygen corona. The atmosphericand ionosphericparametersused in the calculationsare shownin Figures l a and lb. The low solar activity model is basedon the neutral density and temperatureprofiles constructedby Fox and Dalgarno [1979] to fit the Viking 1 measurements[Nier and McElroy, 1977]. The ion temperature profile is a smoothedversionof that measuredby the RPA on Viking 1 [Hanson et al., 1977], and the adoptedelectron temperaturevaluescomefrom the observations of Hansonand Mantas [1988] and the model calculationsof Rohrbaughet al. [1979]. Further details may be found in the work of Fox [1993]. The high solar activity neutral temperatureand density profiles are from the Mars ThermosphericGeneral Circulation Model (MTGCM) of Bougher and coworkers[Bougheret al., 1990; Bougher and Shinagawa,1998]. The ion and electron temperaturesat high solar activity were constructedto be only slightlylarger than thoseat low solaractivitybut greaterthan the neutraltemperatureprofile at all altitudes. An "eroded"ionosphereis the only one assumedfor the low solar activity case. By erodedionospheres,we mean thosefor which a lossprocessfor ions is assumedat high altitudes,presumablydue to the interactionof the ionospherewith the solar wind. Such an interaction is characteristic in situ data, and the plasmapressuremay be large enoughto withstand the solar wind. Therefore we have constructed both erodedand nonerodedhigh solar activity models. The low and high solar activity ionospheres were obtained using the SC#21REFW and F79050N solar fluxes from Hinteregger (private communication, 1998 [see also Torr et al., 1979]). The photoabsorptionand electron impact cross sectionsfor CO2, O, Ar, N2, CO, 02, andNO usedarethosecompiledby Fox [1982; 1993]; the H and He crosssectionsare from a compilation of Kirn [ 1991]. The two-streamapproach[Nagy and Banks,1970] wasused to calculatethe hot oxygenfluxes, as a functionof altitudeand energy. The crosssectionfor elasticcollisionbetweenhot and coldoxygenatomswastakento be 1.2x10 -15cm2, assuggestedby McElroy et al. [1982]. The altitude incrementsused in these calculationsvaried smoothlyfrom 0.2 km at the lower boundaryof 130 km up to 5 km at 345 km, the upperboundary. The energygrid usedwas 0.03 eV and coveredthe rangefrom 0 to 6 eV. The exobase was taken to be at 190 and 210 km for low and high solar activity cases,respectively. In determining the exobaselocation we comparedestimatesof the mean free path and scaleheight,yielding the "classical"value, as well as evaluating the altitude beyond which the upflowing flux no longer had a significant effect on the exosphericdensities; both methodsled to roughly similar estimates. The calculated, hemispherichot oxygenfluxes at the exobasewere transformed to an 6nergydistribution,f(E,z): of bodies without an intrinsic magnetic field [e.g., Cloutier and Daniell, 1979; Luhmann,1990]. The erodedionosphere is modeledby imposing maximum upward velocity boundaryconditionson 11 ions for which convergenceof the model could be obtained. The model ionosphereso obtained is one for which the loss rates are limited by the productionratesof the ions, ratherthan any specificloss process. Further detailsmay be found in the work 400 soli of Fox [1997]. The Viking ion density profiles (at low solar activity) have been found to be reproducibleonly if sucha loss processis imposed [e.g, Chen et al., 1978; $hinagawa and Cravens, 1989; Fox, 1993]. At high solar activity, there is no f(E,z)= {•+(E,z)+•-(E,z)}/v(E) (2) where •+ and•- aretheupward anddownward, hemispheric fluxes, respectively,and v is the oxygen velocity corresponding to energy E. This distributionfunction is then fed into an exospheremodel, based on Liouville's theorem, which calculates the exosphericdensities. 400 = Smin erod dotted = Smax, eroded __ 02+ _ 0 dashed = Smax, noneroded T[ •xxx x•\\ 300 TiTe 300 '•200 200 It/ 100 ! 102 I I 104 I I 106 I I 108 Density (/cm3) I I 1010 , 100 0 , solid= Stain, eroded dashed =Sma•ellxid , , I , 1000 , , . I . 2000 . , . I , . . 3000 . I , . 4000 Temlralare(deg K) Figure 1. (a) Adopted atmosphericand ionosphericdensityvaluesfor high and low solar cycle conditions. (b) Adoptedtemperaturevaluesfor high and low solarcycle conditions. ß ß 5000 K1M ET AL.: BRIEF REPORT 29,341 3. Results and Discussion sdki =Snm 190kin, eroded daled =Smax. 210km, eroded dashed=Smax. 210km, nonerot• The calculatedenergy distributionfunctionsat the exobase. are shown for the three cases considered:low solar activity erodedand both erodedand nonerodedhigh solar activity cases in Figure 2. For the sakeof comparisona cold oxygendistribution corresponding to a temperatureof 195 øK and a densityof 2x106cm-3 anda pseudo hotcomponent for anassumed temperature of 7000øKanda density of 104cm-3 arealsoshown. The visible peaks in the distributionfunction near 2.5 and 3.5 eV correspondto the two branchesof the dissociativerecombination sourcewith the highestbranchingratios. The calculatedhot oxygendensitiesare plottedas a function of altitude, for the three different cases,in Figure 3. The hot oxygen densitiescorrespondingto the low solar activity conditionsare of the samegeneralmagnitudethan the valuescalculated by us earlier [Nagy and Cravens, 1988; Nagy and Kirn, 1990; Zhang et al., 1993] and by Larnrnerand Bauer [1991]. There is a clear and significantincreasein the calculateddensities for the high as comparedto the low solar activity case. The hot oxygen density estimatesby Kotova et al. [1997], from the observed solar wind deceleration measurementsby Phobos2, are nearly an order of magnitudelargerthan even our high solar cycle values. The calculatedhot oxygen densities are smaller than the estimatedthermal hydrogendensitiesfor both low and high solar activity cases. Nevertheless,it has been shown that the hot oxygen corona plays the dominant role in massloadingthe solar wind at Mars [Bauske, 1998b] even thoughthermal hydrogenis the major neutral constituent in the exosphere. For example,it was shownthat in order to obtain bow shock positions consistentwith the latest MGS observations[Acuna et al., 1998] it was necessaryto include the hot oxygen mass loading process. A comparisonof the calculatedhot oxygen densitieswith earlier density estimates for Venus indicatesthat at the higher altitudesthe densitiesat Mars exceed quite significantly those at Venus. This clearly demonstratesthat the hot oxygen corona is more extensiveat Mars, mostlydue to its smallergravity. [• daled-Smax.210km, eroded 105M'• da•d=Sn•210kn• n• 'l lO0O 0 102 103 104 105 Hot OxygenDensity(cm-3) Figure 3. Calculatedhot oxygen density profiles for high and low solar cycle conditions. Integratingthe upwardflux of hot oxygen,with energiesin excessof the escapeenergy, we evaluatedthe escapeflux per unit area at the exobase; the results are shown in Table 1. It can be seenthat the escaperate for the high solar activity caseis greaterthan that for the low activity one by over a factor of 2. If one assumesthat the escapeflux is uniform over the entire exobasesurfacethe total escaperate from the planet is approx- imately5.3x1024 and 1.3x1025 atomss-1 for thelow andhigh solar activity cases,respectively. Although the escapeflux is certainly not homogeneousover the planet, this assumption does give a useful overall estimate. This escaperate can be compared with the estimated value for oxygen ion escape, based on the measurementsobtained by either the ASPERA [Lundin et al., 1989] or PWS [Nairn et al., 1991] instruments carriedaboardthe Phobosspacecraft,which was estimatedto be of theorderof 1025atomss-•. Thusthecurrent hotoxygen and oxygenion escaperatesappearto be of roughlythe sameorder. Zhang et al. [1993] and Luhmann [1997], estimatedand discussedhow these escapeprocessesmay have varied over the last 3 Gyr. It was estimatedthat these escapemechanismsmay accountfor the escapeof up to 30 m of water over this time period; however, some estimatesof the early, planetwide water inventory have been put as high as 500 to 1000 m [Carr, 1986]. The upcomingNozomi and Mars Expressmissionsto Mars • 104 ___,103 I ' •.. 102 : Table 1. CalculatedEscapeFlux Values -, Low SolarActivity (Zc=190km) High SolarActivity (Zc=210km) ErodedIonosphere Ionosphere Ionosphere Eroded 101 0 1 2 3 Noneroded Energy (eV) Escapeflux per Figure 2. Calculatedenergy distributionof atomic oxygen at unit area, the exobasefor high and low solar cycle conditionsas indi- atomscm'2 s-1 cated in the figure legend. The smoothlong dash-shortdash lines indicate a double Maxwellian fit to the calculated mean distribution, for the sake of comparison,as describedin the text. Total escapeflux, atomss-1 3.3x106 8.1x106 9.4x106 5.3x1024 1.3x1025 1.5x1025 29,342 KIM ET AL.: BRIEFREPORT and L. H. are expectedto be able to addressthe issue of the hot atom Kella, D., P. J. Johnson,H. B. Pedersen,L. Vejby-Christensen, Andersen, The source of green light emission determinedfrom a corona and its influence on solar wind interaction processes. heavy-ionstoragering experiment,Science,276, 1530, 1997. As quantitativeinformationon hot oxygendensitiesbecomes Kim, J., Model studiesof the ionosphereof Venus:Ion composition,enavailable, it will becomenecessaryto constructmore sophistiergeticsand dynamics, Ph.D. thesis, Univ. of Mich., Ann Arbor, cated, three-dimensional models of the corona around Mars, in 1991. order to understandbetterthe variousprocesses, causingspatial Kim, Y. H., The Jovian ionosphere,Ph.D. thesis, State Univ. of New York at StonyBrook, 1991. and temporalvariabilities. Until sucha time the simplemodel Kotova, G., et al., Study of the solarwind decelerationupstreamof the used in the calculationspresentedin this paper is sufficientto Martian terminatorbow shock,J. Geophys.Res.,102, 2165, 1997. demonstratethe importanceof the hot oxygenpopulation. Lainruer,H., and S. J. Bauer,Nonthermalatmospheric escapefrom Mars and Titan, J. Geophys.Res., 96, 1819, 1991. Acknowledgments. AndrewF. Nagy and ThomasE. Cravensacknowl- Luhmann,J. G., The solarwind interactionwith unmagnetizedplanets:A tutorial, Geophysical Monograph, edited by pp. 401, AGU, edge the supportof NASA grantsNAG5-4912 and NAGW-1588 for Washington,D.C., 1990. their work, respectively. JaneL. Fox was supportedby NASA grants NAGW-56007 to the StateUniversityof New York at StonyBrook and Luhmann,J. G., Correctionto "The ancientoxygenexosphereof Mars: Implicationsfor atmosphereevolution,by Zhang et al., [1993], J. NAGW-5229 to Wright StateUniversity. Geophys.Res.,102, 1637, 1997. The Editor thanksS. Bougherand anotherrefereefor their assistance Lundin, R., A. Zakharov, R. Pellinen, H. Borg, B. Hultquist, N. in evaluatingthis paper. Pissarenko, E. M. Dubinin, S. W. Barabash, I. Liede, and H. Koskinen,First measurements of the ionospheric plasmaescapefrom References Mars, Nature, 341, 609, 1989. McElroy, M. B., Mars: An evolving atmosphere,Science,215, 1614, 1972. Acuna,M. H., et. al., Magneticfield and plasmaobservations at Mars: Initial results of the Mars Global Surveyor mission,Science, 279, McElroy,M. B., M. J. Prather,andJ. M. Rodriguez,Lossof oxygenfrom Venus,Geophys.Res.Lett., 9, 649, 1982. 1676, 1998. Nagy, A. F., and P.M. Banks,Photoelectron fluxesin the ionosphere,J. Bauske,R., A. F. Nagy, T. I. Gombosi,D. L. DeZeeuw, K. G. Powell, Geophys.Res.,75, 6260, 1970. and J. G. Luhmann,A three-dimensional MHD studyof solar wind Nagy, A. F., and T. E. Cravens,Hot oxygenatomsin the upper atmomassloading processes at Venus:Effectsof photoionization, electron spheresof Venusand Mars, J. Geophys.Res.,15, 433, 1988. impact ionization,and chargeexchange,J. Geophys.Res., 103, in Nagy, A. F., T. E. Cravens,J. H. Yee, and A. I. F. Stewart,Hot oxygen press, 1998a. atomsin the upperatmosphere of Venus,Geophys. Res.Lett., 8, 629, Bauske, R., et al., 3D multiscalemassloaded MHD simulationsof the 1981. solar wind interactionwith VenusandMars, paperpresentedat the Nagy, A. F., J. Kim, and T. E. Cravens,Hot hydrogenand oxygenatoms 32ndCOSPAR ScientificAssembly,Nagoya,1998b. in the upperatmosphereof Venus and Mars, Ann. Geophys.,8, 251, Bougher,S. W., andH. Shinagawa,The Mars thermosphere-exosphere; 1990. Predictionsfor the arrival of Planet-B, Earth Planet. Space,50, 247, Nairn, C. M. C., R. Grard, A. Skalsky,and J. G. Trotignon,Plasmaand 1998. wave observationsin the night sectorof Mars, J. Geophys.Res., 96, Bougher,S. W., R. G. Roble,E. C. Ridley,andR. E. Dickinson,The Mars 11227, 1991. thermosphere,2, General circulationwith coupleddynamicsand Nier, A. O., and M. B. McElroy, Compositionand structureof Mars' upcomposition, J. Geophys.Res.,95, 14811, 1990. peratmosphere: Resultsfrom the massspectrometers on Viking 1 and Carr, M. H., Mars: A water-richplanet?,Icarus,56, 187, 1986. 2, J. Geophys.Res.,82, 4341, 1977. Chen, R. H., T. E. Cravens,and A. F. Nagy, The Martian ionospherein Richards,P. G., M.P. Hickey, and D. G. Torr, New sourcesfor the hot light of the Viking observations, J. Geophys. Res.,83, 3871, 1978. oxygengeocorona,Geophys.Res.Lett.,21, 657, 1994. Cloutier,P. A., and R. E. Daniell, An electrodynamical modelof the solar Rohrbaugh,R. P., J. S. Nisbet,E. Bleuler,andJ. R. Herman,The effect wind interactionwith the ionospheresof Mars and Venus, Planet. of energetically produced 02+ ontheiontemperatures of theMartian SpaceSci., 27, 1111, 1979. thermosphere, J. Geophys.Res.,84, 3327, 1979. Fox, J. L., The chemistryof metastablespeciesin the Venusianiono- Shinagawa,H., and T. E. Cravens,A one-dimensional multispeciesmagsphere,Icarus, 51, 248, 1982. netohydrodynamicmodel of the dayside ionosphereMars, J. Fox, J. L., The productionand escapeof nitrogenatomson Mars, J. Geophys.Res.,94, 6506, 1989. Geophys.Res.,98, 3297, 1993. Torr, M. R., D. G. Torr, R. A. Ong, and H. E. Hinteregger,Ionization Fox, J. L., Upperlimits to the outflowof ionsat Mars: Implicationsfor frequenciesfor major thermosphericconstituents as a functionof atmospheric evolution,Geophys. Res.Lett.,24, 2901, 1997. solarcycle21, Geophys.Res.Lett., 6, 771, 1979. Fox, J. L., andA. Dalgarno,Ionization,luminosity,andheatingof theup- Zhang,M. H. G., J. G. Luhmann,S. W. Bougherand A. F. Nagy, The per atmosphere of Mars,J. Geophys. Res.,84, 7315, 1979. ancient oxygen exosphereof Mars: Implicationsfor atmosphere Fox, J. L., and A. Hac, Spectrumof hot O at the exobases of the terresevolution,J. Geophys.Res.,98, 10915, 1993. trial planets,J. Geophys. Res.,102, 24005, 1997. Gerard,J. C., P. G. Richards,V. I. Shematovich,and D. V. Bisikalo,The T. E. Cravens,Departmentof PhysicsandAstronomy,Universityof importanceof new chemicalsourcesfor the hot oxygengeocorona, Kansas,Lawrence, KS 66045. Geophys.Res.Lett., 22, 279, 1995. J. L. Fox, Institutefor Terrestrialand PlanetaryAtmospheres,State Hanson,W. B., and G. P. Mantas, Viking electrontemperaturemeasurements:Evidencefor a magneticfield in the Martian atmosphere, Universityof New York at StonyBrook,StonyBrook,NY 11794. J. Geophys.Res.,93, 7538, 1988. J. Kim, SpaceDivision, KoreanAerospaceResearchInstitute,52 •anson,W. B., S. Sanatani, andD. R. Zuccaro, Themartianionosphere Euon-dong,Yusong-gu,Taejon, Korea. as observedby the Viking retardingpotentialanalyzer,J. Geophys. A. F. Nagy, Department of Atmospheric,Oceanic and Space Res., 82, 4351, 1977. Sciences, University of Michigan, Ann Arbor, MI 48109. Hickey,M.P., P. G. Richards,andD. G. Torr, New sources for the hot ([email protected]) oxygengeocorona:Solar cycle, seasonal,latitudinaland diurnal variations,J. Geophys.Res.,100, 17377, 1995. Ip, W. H., The fastatomicoxygencoronaextentof Mars,Geophys. Res. (ReceivedJuly7, 1998;revisedAugust3, 1998; Lett., 17, 2289, 1990. acceptedAugust 17, 1998.)
© Copyright 2026 Paperzz