Math 110, 29/5/1431H Test 2–Version D 1 Instructions. (30points

Math 110,
29/5/1431H
Test 2–Version D
1
Instructions. (30 points) Solve each of the following problems.
(1pts )
π‘₯2 βˆ’ 16
=
π‘₯β†’βˆ’4 π‘₯ βˆ’ 4
(a) Does Not Exist
1. lim
(b) 8
(c)
 0
Solution:
(d) βˆ’8
(βˆ’4)2 βˆ’ 16
π‘₯2 βˆ’ 16
=
π‘₯β†’βˆ’4 π‘₯ βˆ’ 4
βˆ’4 βˆ’ 4
16 βˆ’ 16
=
βˆ’8
0
=0
=
βˆ’8
lim
(1pts )
2. If cos π‘₯ =
βˆ’3
4
(a)
3
,
5
3πœ‹
< π‘₯ < 2πœ‹ then
2
βˆ’4
3
Solution:
(c)
csc π‘₯ =
(b)

βˆ’5
4
(d)
βˆ’4
5
adjacent
3
=
we draw a triangle is shown below:
5
hypotenuse
5
3πœ‹
< π‘₯ < 2πœ‹,
Now, 𝐻 2 = 𝐴2 + 𝑂2 β‡’ 25 = 9 + 𝑂2 β‡’ 𝑂 = 4. Since
2
then π‘₯ lies in the forth quadrant. Hence since the π‘¦βˆ’ axis is π‘₯
3
negative, then sin π‘₯ < 0 and since the π‘₯βˆ’axis is positive then
βˆ’5
.
cos π‘₯ > 0. Therefore csc π‘₯ < 0 Hence csc π‘₯ =
4
Since cos π‘₯ =
(1pts )
3π‘₯2 + 2
=
π‘₯β†’βˆž 1 βˆ’ π‘₯ βˆ’ π‘₯3
(a)
 0
4
3. lim
(b) ∞
βˆ’1
(d) βˆ’3
3
Solution:
Since lim (3π‘₯3 + 2) = ∞, lim (1 βˆ’ π‘₯ βˆ’ π‘₯3 ) = ∞ we have I.F. type ∞/∞. Divide
π‘₯β†’βˆž
π‘₯β†’βˆž
each term in the numerator and each term in the denominator by the highest power in the
(c)
Math 110,
29/5/1431H
Test 2–Version D
2
denominator.
3π‘₯2 + 2
+2
π‘₯3
= lim
lim
3
π‘₯β†’βˆž 1 βˆ’ π‘₯ βˆ’ π‘₯
π‘₯β†’βˆž 1 βˆ’ π‘₯ βˆ’ π‘₯3
π‘₯3
2
3π‘₯2
+ 3
3
π‘₯
π‘₯
= lim
π‘₯β†’βˆž 1
π‘₯
π‘₯3
βˆ’
βˆ’
π‘₯3 π‘₯3 π‘₯3
2
3
+ 3
π‘₯ π‘₯
= lim
1
π‘₯β†’βˆž 1
βˆ’
βˆ’5
π‘₯3 π‘₯2
0+0
=0
=
0βˆ’0βˆ’1
3π‘₯2
(1
pts
)
(πœ‹ )
(πœ‹ )
(πœ‹)
(πœ‹)
cos
βˆ’ sin
sin
=
4. cos
18
9
9
18
(a) 2
(b)

(c) 0
(d)
Solution:
cos
(1pts )
√
5. The curve
𝑓 (π‘₯) =
(a) 𝑦 = 0,
𝑦=2
(c) π‘₯ = 0,
Solution:
π‘₯ = ±2
3
2
1
2
(πœ‹ )
(πœ‹)
(πœ‹)
(πœ‹
(πœ‹)
πœ‹)
cos
βˆ’ sin
sin
= cos
+
18
9
18
9
18) 9
(πœ‹
= cos
√ 6
3
.
=
2
π‘₯2 βˆ’ π‘₯ βˆ’ 6
has a vertical asymptote at
π‘₯3 βˆ’ 4π‘₯
(b)
 π‘₯ = 0, π‘₯ = 2
(d) π‘₯ = 0,
π‘₯ = βˆ’2
(π‘₯ βˆ’ 3)(π‘₯ + 2)
. The zeroes of the denominator are βˆ’2, 0, and 2. To
π‘₯(π‘₯ βˆ’ 2)(π‘₯ + 2)
check that π‘₯ = βˆ’2 is a vertical asymptote or not we take the limit at βˆ’2 from both sides.
βˆ’ 3)
βˆ’5
(π‘₯
+2)(π‘₯
π‘₯βˆ’3
= lim
=
. Hence π‘₯ = βˆ’2 is not a vertical
lim 𝑓 (π‘₯) = lim
π‘₯β†’βˆ’2
π‘₯β†’βˆ’2 π‘₯
(π‘₯
+ 2)(π‘₯ βˆ’ 2) π‘₯β†’βˆ’2 π‘₯(π‘₯ βˆ’ 2)
8
Write 𝑓 (π‘₯) =
βˆ’
asymptote. To check that π‘₯ = 2 we take the limit lim 𝑓 (π‘₯) = lim
π‘₯β†’2+
π‘₯β†’2+
(π‘₯ βˆ’ 3)(π‘₯ + 2)
+
= βˆ’βˆž.
π‘₯(π‘₯ βˆ’ 2)(π‘₯ + 2)
Hence π‘₯ = 2 is a vertical asymptote. To check that π‘₯ = 0 we take the limit lim 𝑓 (π‘₯) =
π‘₯β†’0+
βˆ’
lim
π‘₯β†’0+
(π‘₯ βˆ’ 3)(π‘₯ + 2)
βˆ’
= ∞. Hence π‘₯ = 0 is a vertical asymptote. Thus the function has
π‘₯(π‘₯ βˆ’ 2)(π‘₯ + 2)
vertical asymptote at π‘₯ = 0, and π‘₯ = 2.
Math 110,
(1pts )
29/5/1431H
Test 2–Version D
3
6. If
⎧
π‘₯ + 3,
if π‘₯ < βˆ’4;


⎨
3,
if π‘₯ = βˆ’4;
Then
𝑓 (π‘₯) =

π‘₯3 + 64

⎩
, if π‘₯ > βˆ’4.
π‘₯2 βˆ’ 16
(a) 0
lim 𝑓 (π‘₯) =
π‘₯β†’βˆ’4+
(b)
 βˆ’6
(c) 6
(d) βˆ’2
Solution:
Note that when computing limit as π‘₯ β†’ π‘Ž+ means you approaches π‘Ž from the right side
that is π‘₯ > π‘Ž.
π‘₯3 + 64
π‘₯β†’βˆ’4+ π‘₯2 βˆ’ 16
π‘₯3 + 64
= lim 2
A direct substation will give us I.F. 0/0
π‘₯β†’βˆ’4 π‘₯ βˆ’ 16
(π‘₯ + 4)(π‘₯2 βˆ’ 4π‘₯ + 16)
= lim
Factoring π‘₯ + 4 from denominator and numerator
(π‘₯ + 4)(π‘₯ βˆ’ 4)
π‘₯β†’βˆ’4+
2 βˆ’ 4π‘₯ + 16)
(π‘₯
+4)(π‘₯
= lim
βˆ’ 4)
(π‘₯
+4)(π‘₯
π‘₯β†’βˆ’4+
π‘₯2 βˆ’ 4π‘₯ + 16
= lim
π‘₯βˆ’4
π‘₯β†’βˆ’4+
2
(βˆ’4) βˆ’ 4(βˆ’4) + 16
=
βˆ’4 βˆ’ 4
48
= βˆ’6.
=
βˆ’8
lim 𝑓 (π‘₯) = lim
π‘₯β†’βˆ’4+
(1pts )
7.
𝑑52
(cos π‘₯) =
𝑑π‘₯52
(a) βˆ’ sin π‘₯
(c)
 cos π‘₯
Solution:
Since 52 = 4(13) + 0 then
(1pts )
(b) sin π‘₯
(d) βˆ’ cos π‘₯
𝑑0
𝑑52
(cos
π‘₯)
=
(cos π‘₯) = cos π‘₯.
𝑑π‘₯52
𝑑π‘₯0
√
π‘₯2 βˆ’ 2π‘₯ βˆ’ 3
≀ 𝑓 (π‘₯) ≀ 3π‘₯ + 7,
π‘₯βˆ’3
(a) 1
8. If
(c) βˆ’4
Solution:
π‘₯ ∈ [2, 4], π‘₯ βˆ•= 3, then
lim 𝑓 (π‘₯) =
π‘₯β†’3
(b)
 4
(d) 0
√
π‘₯2 βˆ’ 2π‘₯ βˆ’ 3
(π‘₯ βˆ’ 3)(π‘₯ + 1)
= lim
= lim (π‘₯ + 1) = 4, and lim 3π‘₯ + 7 = 4,
π‘₯β†’3
π‘₯β†’3
π‘₯β†’3
π‘₯β†’3
π‘₯βˆ’3
π‘₯βˆ’3
then by The Sandwich Theorem we have lim 𝑓 (π‘₯) = 4.
Since lim
π‘₯β†’3
Math 110,
(1pts )
29/5/1431H
Test 2–Version D
sin2 (4π‘₯)
=
π‘₯β†’0
π‘₯2
9. lim
(a)
 16
(b)
1
16
Solution:
1
4
(d) 4
(c)
)
(
π‘₯2
sin (4π‘₯) 2 π‘Žπ‘› ( π‘Ž )𝑛
= lim
=
.
lim
𝑏𝑛
𝑏
π‘₯β†’0 sin2 (4π‘₯)
π‘₯β†’0
π‘₯
)
(
4 sin (4π‘₯) 2
make the top similar to the angle
= lim
π‘₯β†’0
4π‘₯
)
(
sin (4π‘₯) 2
sin π‘₯
π‘₯
Use that lim
= 4 lim
= 1 = lim
π‘₯β†’0 π‘₯
π‘₯β†’0 sin π‘₯
π‘₯β†’0
4π‘₯
= (4.1.)2 = 16.
(1pts )
10. lim 𝑒 cos 𝑒 cot (3𝑒) =
𝑒→0
(a) 3
(b) βˆ’3
1
(d) 1
3
Solution:
Direct substation will give us I.F. type 0/0.
(c)

𝑒
𝑒→0
tan (3𝑒)
3𝑒
1
= lim cos 𝑒
3 𝑒→0
tan (3𝑒)
1
1
= (1)(1) =
3
3
lim 𝑒 cos 𝑒 cot (3𝑒) = lim cos 𝑒
𝑒→0
(1pts )
cot π‘₯
, then 𝑦 β€² =
1 βˆ’ csc π‘₯
csc2 π‘₯
(a)
(1 βˆ’ csc π‘₯)2
11. If
𝑦=
βˆ’ csc π‘₯
1 βˆ’ csc π‘₯
Solution:
(c)
tan πœƒ
=1
πœƒβ†’0 πœƒ
use lim
(b)
βˆ’ csc π‘₯
(1 βˆ’ csc π‘₯)2
(d)

csc π‘₯
1 βˆ’ csc π‘₯
4
Math 110,
29/5/1431H
𝑦′ =
=
=
=
=
(1pts )
Test 2–Version D
(1 βˆ’ csc π‘₯)(βˆ’ csc2 π‘₯) βˆ’ (cot π‘₯)(cscπ‘₯ cot π‘₯)
(1 βˆ’ csc π‘₯)2
βˆ’ csc2 π‘₯ + csc3 π‘₯ βˆ’ csc π‘₯ cot2 π‘₯
(1 βˆ’ csc π‘₯)2
csc π‘₯(βˆ’ cot π‘₯ + cot2 π‘₯ βˆ’ csc2 π‘₯)
(1 βˆ’ csc π‘₯)2
csc π‘₯(1 βˆ’ csc π‘₯)
(1 βˆ’ csc π‘₯)2
csc π‘₯
.
1 βˆ’ csc π‘₯
12. The graph of the function
(a)
 π‘₯ = ±4
Use the fact csc2 π‘₯ βˆ’ cot2 π‘₯ = 1
simplify
𝐹 (π‘₯) = π‘₯3 βˆ’ 48π‘₯, has a horizontal tangent line at
(b) π‘₯ = βˆ’4
(c) π‘₯ = 0
Solution:
(d) π‘₯ = 4
𝐹 (π‘₯) = π‘₯3 βˆ’ 48π‘₯
𝐹 β€² (π‘₯) = 3π‘₯2 βˆ’ 48 = 3(π‘₯2 βˆ’ 16)
𝐹 β€² (π‘₯) = 0
3(π‘₯2 βˆ’ 16) = 0
π‘₯ = ±4.
(1pts )
13. An equation for the tangent line to the curve 𝑓 (π‘₯) = π‘₯2 βˆ’ 2π‘₯ at π‘₯ = βˆ’1 is
(a)
 𝑦 = βˆ’4π‘₯ βˆ’ 1
(b) 𝑦 = βˆ’4π‘₯ + 7
(c) 𝑦 = 4π‘₯ + 1
(d) 𝑦 = 4π‘₯ βˆ’ 1
Solution:
The slope of the tangent line to 𝑓 (π‘₯) = π‘₯2 βˆ’ 2π‘₯ at π‘₯ = βˆ’1 is 𝑓 β€² (βˆ’1).
𝑓 (π‘₯) = π‘₯2 βˆ’ 2π‘₯ β‡’ 𝑓 β€² (π‘₯) = 2π‘₯ βˆ’ 2.
Hence
the slope of the tangent = 𝑓 β€² (βˆ’1) = 2(βˆ’1) βˆ’ 2 = βˆ’4.
Also 𝑓 (1) = (βˆ’1)2 βˆ’ 2(βˆ’1) = 3. Now, we have π‘š = βˆ’4 and (βˆ’1, 3), hence
𝑦 βˆ’ 𝑦1 = π‘š(π‘₯ βˆ’ π‘₯1 ) β‡’ 𝑦 βˆ’ 3 = βˆ’4(π‘₯ + 1) β‡’ 𝑦 βˆ’ 3 = βˆ’4π‘₯ βˆ’ 4 β‡’ 𝑦 = βˆ’4π‘₯ βˆ’ 1.
5
Math 110,
(1pts )
29/5/1431H
Test 2–Version D
6
14. The accompanying figure shows the
graph of 𝑦 = 𝑓 (π‘₯). Then the period of
𝑦 = 𝑓 (π‘₯) is
𝑦
𝑦 = 𝑓 (π‘₯)
(a)
 3
-5
(b) πœ‹
-4
-3
-2
-1
1
2
3
4
π‘₯
-1
-2
(c) 1
-3
(d) 2
Solution:
From the graph we can see that the function repeat itself every 3 units. Hence the
period is 3
(1pts )
15. If lim 𝑓 (π‘₯) exist and 𝑓 (1) is defined, then must 𝑓 (π‘₯) be continuous at π‘₯ = 1.
π‘₯β†’1
(a) True
(b)
 False
Solution:
{
2, if π‘₯ βˆ•= 1;
Then 𝑓 (1) = 0, but lim 𝑓 (π‘₯) = lim 2 = 2, Now,
0, if π‘₯ = 1.
π‘₯β†’1
π‘₯β†’1
lim 𝑓 (π‘₯) = 2 βˆ•= 0 = 𝑓 (1), hence 𝑓 is discontinuous at π‘₯ = 1.
False. Let 𝑓 (π‘₯) =
π‘₯β†’1
(1pts )
𝑦
16. The accompanying figure shows the graph of 𝑦 =
𝑓 (π‘₯). Then 𝑓 β€² (βˆ’3) < 𝑓 β€² (3).
𝑦 = 𝑓 (π‘₯)
(a) True
(b)
 False
-4
-3
-2
-1
1
2
3
-1
-2
-3
Solution:
From the graph we can see that the tangent line to the graph of 𝑦 = 𝑓 (π‘₯) at βˆ’3 is rising
up (left to right) and hence its slope is positive. Now, since the first derivative is the slope
of the tangent line to the graph at βˆ’3 then 𝑓 β€² (βˆ’3) > 0. From the graph we can see that the
tangent line to the graph of 𝑦 = 𝑓 (π‘₯) at 3 is falling down (left to right) and hence its slope
is negative. Thus, since the first derivative is the slope of the tangent line to the graph at
3 then 𝑓 β€² (3) < 0. Now, 𝑓 β€² (βˆ’3) > 0 > 𝑓 β€² (3).
(1pts )
17. The accompanying figure shows the graph of 𝑦 =
𝑓 (π‘₯). Then lim 𝑓 (π‘₯) =
𝑦
π‘₯β†’0
(a) 0
(b)
 βˆ’1
(c) Does Not Exist
(d) 1
𝑦 = 𝑓 (π‘₯)
2
1
-3
-2
-1
1
-1
-2
2
3
π‘₯
π‘₯
Math 110,
29/5/1431H
Test 2–Version D
7
Solution:
since lim 𝑓 (π‘₯) = βˆ’1 = lim 𝑓 (π‘₯), then lim 𝑓 (π‘₯) = βˆ’1.
π‘₯β†’0+
(1
pts
)
π‘₯β†’0βˆ’
√
2βˆ’ π‘₯+3
18. lim
=
π‘₯β†’1
π‘₯βˆ’1
βˆ’1
(a)

4
π‘₯β†’0
(b)
1
4
(c) 0
(d) βˆ’4
Solution:
A direct substation will give us I.F. 0/0. Now,
√
√
√
2βˆ’ π‘₯+3
2βˆ’ π‘₯+3 2+ π‘₯+3
√
= lim
β‹…
lim
π‘₯β†’1
π‘₯β†’1
π‘₯βˆ’1
π‘₯βˆ’1
2+ π‘₯+3
√
22 βˆ’ ( π‘₯ + 3)2
√
= lim
π‘₯β†’1 (π‘₯ βˆ’ 1)(2 + π‘₯ + 3)
4 βˆ’ (π‘₯ + 3)
√
= lim
π‘₯β†’1 (π‘₯ βˆ’ 1)(2 + π‘₯ + 3)
βˆ’
(π‘₯
βˆ’1)
√
= lim
π‘₯β†’1 (π‘₯
βˆ’1)(2 + π‘₯ + 3)
βˆ’1
√
= lim
π‘₯β†’βˆ’ 2 + π‘₯ + 3
βˆ’1
=√
1+3+2
βˆ’1
.
=
4
(1pts )
Multiply by 1 =
√
2+ π‘₯+3
√
2+ π‘₯+3
Simplify
19. The accompanying figure shows the graph of 𝑦 =
𝑓 (π‘₯). Then 𝑓 is differentiable at π‘₯ = βˆ’1.
𝑦
(a) True
𝑦 = 𝑓 (π‘₯)
3
2
(b)
 False
1
-4
-3
-2
-1
1
-1
2
Solution:
𝑓 is not differentiable at π‘₯ = βˆ’1 since the derivative from the left of βˆ’1 approaches βˆ’βˆž
and from the right of βˆ’1 approaches βˆ’βˆž and hence the function has a vertical tangent line
at π‘₯ = βˆ’1.
(1pts )
20. If 𝑦 = π‘₯ + cot π‘₯ tan π‘₯, then 𝑦 β€² =
(a) βˆ’ sec2 π‘₯ csc2 π‘₯
(c)
 1
Solution:
(b) 0
(d) βˆ’1
π‘₯
Math 110,
29/5/1431H
Test 2–Version D
8
𝑦 = π‘₯ + cot π‘₯ tan π‘₯
1
tan π‘₯
𝑦 =π‘₯+
tan π‘₯
𝑦 =π‘₯+1
𝑦 β€² = 1.
(1pts )
π‘₯+4
is continuous on
3 βˆ’ ∣π‘₯ + 1∣
(a) (βˆ’βˆž, βˆ’4) βˆͺ (βˆ’4, ∞)
(b)
 (βˆ’βˆž, βˆ’4) βˆͺ (βˆ’4, 2) βˆͺ (2, ∞)
21. The function
𝑓 (π‘₯) =
(c) (βˆ’βˆž, 2) βˆͺ (2, ∞)
(d) [βˆ’4, 2]
π‘₯+3
is a rational function, then it is continuous on
3 βˆ’ ∣π‘₯ + 1∣
its domain which is the set of real number except the zeroes of the denominator and it is
discontinuous at the zeroes of the the denominator. Now
Solution: Notice that 𝑓 (π‘₯) =
3 βˆ’ ∣π‘₯ + 1∣ = 0 ⇔ ∣π‘₯ + 1∣ = 3
⇔ π‘₯ + 1 = βˆ’3 or π‘₯ + 1 = 3
⇔ π‘₯ = βˆ’4 or π‘₯ = 2.
Hence 𝑓 is continuous on (βˆ’βˆž, βˆ’4) βˆͺ (βˆ’4, 2) βˆͺ (2, ∞).
(1pts )
𝑦
22. The accompanying figure shows the graph of 𝑦 =
𝑓 (π‘₯). Then 𝑓 β€² (2) =
𝑦 = 𝑓 (π‘₯)
(a) βˆ’2
(b)
 0
-4
-3
-2
-1
1
2
-1
(c) Undefined
-2
(d) 2
-3
Solution:
From the graph we can see that the tangent line to the graph of 𝑦 = 𝑓 (π‘₯) at 2 is
horizontal (𝑦 = 0) and hence its slope is zero. Now, since the first derivative is the slope of
the tangent line to the graph at 2 then 𝑓 β€² (2) = 0.
(1pts )
23. If
(a)

𝑦 =π‘₯+
βˆ’24
π‘₯5
√
1
βˆ’ 5, then 𝑦 β€²β€²β€² =
2
π‘₯
1
24
+ √
π‘₯5 2 5
Solution:
(c)
(b)
βˆ’24
1
+ √
5
π‘₯
2 5
(d)
24
π‘₯5
3
π‘₯
Math 110,
29/5/1431H
Test 2–Version D
√
1
βˆ’ 5
2
π‘₯
√
𝑦 = π‘₯ + π‘₯βˆ’2 βˆ’ 5
𝑦 =π‘₯+
𝑦 β€² = 1 βˆ’ 2π‘₯βˆ’3
𝑦 β€²β€² = 6π‘₯βˆ’4
𝑦 β€²β€²β€² = βˆ’24π‘₯βˆ’5 =
(1pts )
24. If
(a)
𝑦=
3π‘₯ βˆ’ 2
, then 𝑦 β€² =
π‘₯+2
4
(π‘₯ + 2)2
8
(π‘₯ + 2)2
Solution:
(c)

(b)
6π‘₯ + 8
(π‘₯ + 2)2
(d)
βˆ’4
(π‘₯ + 2)2
Bottom Derivative of Top
𝑦′ =
(π‘₯ + 2)
βˆ’24
.
π‘₯5
Top
β€²
βˆ’ (3π‘₯ βˆ’ 2)
(3π‘₯ βˆ’ 2)
Derivative of Bottom
(π‘₯ + 2)β€²
Bottom2
(π‘₯ + 2)2
(π‘₯ + 2)(3) βˆ’ (3π‘₯ βˆ’ 2)(1)
(π‘₯ + 2)2
3π‘₯ + 6 βˆ’ (3π‘₯ βˆ’ 2)
=
(π‘₯ + 2)2
3π‘₯ + 6 βˆ’ 3π‘₯ + 2)
=
(π‘₯ + 2)2
8
=
.
(π‘₯ + 2)2
=
(
(1
pts
)
25. lim cos
πœƒβ†’0
πœ‹ tan (πœƒ)
2πœƒ
)
=
(a) βˆ’1
(b) 1
(c)
 0
Solution:
(d) ∞
(
lim cos
πœƒβ†’0
πœ‹ tan (πœƒ)
2πœƒ
)
(
)
πœ‹ tan (πœƒ)
= cos lim
πœƒβ†’0
2πœƒ
(πœ‹ )
= cos
2
= 0.
9
Math 110,
(1pts )
29/5/1431H
Test 2–Version D
26. If 𝑦 = π‘₯ cot π‘₯, then 𝑦 β€² =
(a)
 cot π‘₯ βˆ’ π‘₯ csc2 π‘₯
10
(b) cot π‘₯ βˆ’ π‘₯ csc π‘₯
(d) cot π‘₯ + π‘₯ csc2 π‘₯
(c) cot π‘₯ + π‘₯ csc π‘₯
Solution:
𝑦 β€² = (π‘₯)β€² cot π‘₯ + π‘₯(cot π‘₯)β€²
= cot π‘₯ + π‘₯(βˆ’ csc2 π‘₯)
= cot π‘₯ βˆ’ π‘₯ csc2 π‘₯.
(1pts )
π‘₯2 βˆ’ 16
=
π‘₯β†’4 π‘₯2 βˆ’ π‘₯ βˆ’ 12
8
(a)

7
27. lim
(c) 0
Solution:
π‘₯2 βˆ’ 16
π‘₯2 βˆ’ 16
=
lim
π‘₯β†’4 π‘₯2 βˆ’ π‘₯ βˆ’ 12
π‘₯β†’4 π‘₯2 βˆ’ π‘₯ βˆ’ 12
(π‘₯ + 4)(π‘₯ βˆ’ 4)
= lim
π‘₯β†’4 (π‘₯ βˆ’ 4)(π‘₯ + 3)
(π‘₯ + 4)
(π‘₯
βˆ’4)
= lim
+ 3)
π‘₯β†’4 (π‘₯
βˆ’4)(π‘₯
π‘₯+4
= lim
π‘₯β†’4 π‘₯ + 3
8
4+4
= .
=
4+3
7
lim
(1pts )
28.
π‘₯2 βˆ’ 12
=
π‘₯β†’βˆ’3βˆ’ 4π‘₯ + 12
(a) Does Not Exist
(b)
7
8
(d)
βˆ’8
7
A direct substation will give us I.F. 0/0
Factoring π‘₯ βˆ’ 4 from denominator and numerator
lim
(b)
 ∞
(c) βˆ’βˆž
Solution:
lim
π‘₯β†’βˆ’3βˆ’
(d) 0
π‘₯2 βˆ’ 12
π‘₯2 βˆ’ 16
= lim
4π‘₯ + 12 π‘₯β†’βˆ’3βˆ’ 2π‘₯ + 6
π‘₯2 βˆ’ 12
= lim
π‘₯β†’βˆ’3βˆ’ 4π‘₯ + 12
A direct substation gives I.F. βˆ’7/0.
If π‘₯ < βˆ’3 and near βˆ’3,then π‘₯2 βˆ’ 12 < 0, 4π‘₯ + 12 < 0.
βˆ’
= lim
π‘₯β†’βˆ’3βˆ’
π‘₯2 βˆ’ 12
βˆ’
4π‘₯ + 12
=∞
Math 110,
29/5/1431H
Test 2–Version D
𝑦
𝑦=
3
2
11
π‘₯2 βˆ’ 12
4π‘₯ + 12
1
-8
-7
-6
-5
-4
-3
-2
-1
-1
1
2
3
π‘₯
-2
-3
-4
-5
(1pts )
29. The curve
𝑓 (π‘₯) =
(a) 𝑦 = 0
2π‘₯3 + π‘₯ βˆ’ 2
has a horizontal asymptote at
π‘₯3 + π‘₯ βˆ’ 2
(b) π‘₯ = 2
(c) 𝑦 = 1
(d)
 𝑦=2
Solution:
To find the horizontal asymptote we take the limit as π‘₯ β†’ ±βˆž Note that both the
numerator and the denominator β†’ ±βˆž, as π‘₯ β†’ ±βˆž. To find this limit divided both the
numerator and the denominator by the highest power of π‘₯ in the denominator which is π‘₯3 .
So,
lim
π‘₯β†’±βˆž
2π‘₯3 + π‘₯ βˆ’ 2
+π‘₯βˆ’2
π‘₯3
= lim
3
3
π‘₯β†’±βˆž
π‘₯ +π‘₯βˆ’2
π‘₯ +π‘₯βˆ’2
π‘₯3
1
2
2+ 2 βˆ’ 3
π‘₯
π‘₯
= lim
1
2
π‘₯β†’±βˆž
1+ 2 βˆ’ 3
π‘₯
π‘₯
2+0βˆ’0
= 2.
=
1+0βˆ’0
2π‘₯3
Therefore 𝑦 = 2 is a horizontal asymptote.
(1pts )
30. lim
π‘₯β†’βˆ’1
(a) 0
∣π‘₯ βˆ’ 1∣ βˆ’ 2
=
π‘₯+1
(b) Does Not Exist
(c) 1
(d)
 βˆ’1
Solution:
A direct substation gives I.F. 0/0. Note that if π‘₯ > βˆ’1 or π‘₯ < βˆ’1 near(close) to βˆ’1
Math 110,
29/5/1431H
Test 2–Version D
then π‘₯ βˆ’ 1 < 0 β‡’ ∣π‘₯ βˆ’ 1∣ = βˆ’(π‘₯ βˆ’ 1).
lim
π‘₯β†’βˆ’1
∣π‘₯ βˆ’ 1∣ βˆ’ 2
βˆ’(π‘₯ βˆ’ 1) βˆ’ 2
= lim
π‘₯β†’0
π‘₯+1
π‘₯+1
βˆ’π‘₯ + 1 βˆ’ 2
= lim
π‘₯β†’1
π‘₯+1
βˆ’π‘₯ βˆ’ 1
= lim
π‘₯β†’1 π‘₯ + 1
βˆ’(π‘₯ + 1)
= lim
π‘₯β†’1 π‘₯ + 1
= lim (βˆ’1)
π‘₯β†’1
= βˆ’1
12