Algebra 1 Exponent Practice #1 Name: ______________________________ Simplify each expression completely. Assume that no variable is equal to zero. Final answers should include no negative exponents. You must copy the original problem. The problems labeled with an asterisk (*), write out each factor individually and then simplify. Set A: Product of Powers and Extension (Rules #1, 2) *1. *2. 3. 4. 5. *6. *7. 8. 9. 42 • 43 x2 • x4 y4 • y3 62 • 63 g5 • g6 f3 • f3 k4 • k3 w • w5 k2 • k3 • k2 *10. 11. *12. 13. 14. € 15. *16. 17. 18. a5(a)(a3) (b 8 )(b 6 )(b 20 ) (-10e4)(2e5) 33 • 32 • 3 x7 • x2 g15 • g -5y2 • 2y 94 • 92 -3p6 • 5p9 19. 20. 21. 22. *23. 24. *25. 26. h4 • h3 • h2 6r100 • -8r90 s14 • s9 4g171 • g75 -60d4 • -15d2 • 2 (-8y5)(5y) (3a2)(4a3) (-15e3)(-2e4) Set B: Power of a Power and Power of a Product (Rules #3, 4) *1. 2. *3. 4. 5. 6. *7. *8. (34)2 (72)6 (c4)3 (x3)4 (s2)2 (j5)3 (-m2)2 -(m2)2 *9. *10. 11. 12. *13. *14. *15. 16. (3p)4 (6y)2 (10x)5 (22)4 (a 3 ) 4 (a 2 ) (6q)2(-1q) (7x)2(5x)(2x)2 (-12r)(r)2(-2r) 12. 13. *14. 15. *16. 17. 18. *19. 20. *21. 22. *23. -3(2w)4 (-3b)6(2b5) (4dkm)3 (4d1k1m1)3 (5x5)2(3x6)(3x2)2 (-4r3)(12r2)2(5r) (r3•r4)3(r4•r4)2 (-11m4)(-6m3)3 (8d6)5(-6d2b5)8 (-4m7n9)3 (42x3y2)7 (p6)2(8p5n4)4 *17. 18. *19. 20. *21. € 22. a5(a3)2(a5)3 (b 8 )4 (b 6 )2 (b 20 )3 (-10e)5(2e)3 (-8y)8(5y)4 (3a)2(4a)2 (-15e)5(-2e)2 € Set C: Extension of Power of a Power and Power of a Product (Rule #5) *1. *2. 3. *4. *5. *6. € 7. 8. 9. *10. 11. (3y3)4 (6y5)2 (2a 3 )4 (a 2 ) (3q2)3(2q4) -(3xy)2 (-3xy)2 -2(xz)5 (-2xz)5 (8d6)7(-6d2)6 (p6)4(8p5) (6y3)10(-4y2)7 24. 25. 26. 27. 28. *29. 30. 31. *32. 33. (6x2y3)(-4x4y2) -3(2wz)4 (-3ab)3(2b3) (c3)5(d3)13 (r3t4)3(r4t4)5 (-11m4)(-6m3p2)2 (4a12b11)3 (2wz)40 (5x5)2(3y6)3(3x2) (-4r3)10(12r-2)15(5r) Set D: Quotient of Powers and Extension (Rules #6, 7) *1. *2. € *3. € 4. € *5. € 6. 36n 5 12n a 5b 6 ab 5 x2 y4 y2 z 33 z16 - 10b 6 − 2b 2 −4f 5 −4f 2 7. *8. € € *9. 10. € *11. € *12. −12x 7 6x 2 4c 2 d 3 cd 3 2 ( x 3 y 5 z) 4 2 x z 10s 7 5s 4 35z10 5z 8 10m 6 n 3 5m 2 n € Set E: Power of a Quotient and Extension (Rules #8, #9) *1. *2. € € € € € € 3. 4. *5. *6. 2 2 5 −x 3 4 2 y m 3 4 n (−t)2 8 6 y 12 3 17 −k 13 4 11 h € 7. 8. € € € € *9. *10. 11. 12. 5 6 4 j m12 10 7 − p 3x 2 5x 7x 3 4 2 10y 5 2 m 3 5 4 (−3) n 8t 2 8 2 4 6 y € Set F: Zero Exponents Property (Rule #10) 1. 2. 3. 4. 5 6. 7. (c3)5(d3)0 (yz)0 (3a2b6)0 (60)4 (7m5n)2(-3mn3)0 (2x4)2(6x)0(-3x4) c0 c −3 € 8. 9. 10. 11. € 12. 13. 9a 6b−3 0 −8 18a b (-12r0)(r)2(-2r) (5x5)2(3x6)(3x2)0 (-4r3)(12r2)0(5r) (r3•r0)3(r4•r4)0 (4a0b11)3 13. 14. € *15. € 16. € 17. x11 y 3 x11 y y14 y10 32 m 5 p 6 3 m2 p5 −8 p 34 2 p 23 d 2e4 f de2 € € *13. *14. € € € 15. 16. 17. 2 5 m 3 4 −7k 10 6 k 7 4 12 3h −5r 3 6 2 4 3 s 9m 4 10 7 3 6 p −32 y 4 10 17 3 2 r € € 14. 15. 16. € 17. € € (2wz)0 x0 y4 y2 z 33 z0 35z 0 5z 8 Set G: Negative Exponents (Rule #11) *1. € 2. 3. 4. *5. 6. 7. 8. € 9. 10. *11. 12. 13. € 14. 15. 16. 17. € 18. 19. 20. 21. 22. x2 x5 x-4 25-2 b-5 15m 4 5m 7 k-4 j-1 x-2y-2 a4z-4 f-3k5 28 p 2 4 p3 -2 -1 j k p-1r-1 j 3k 2 4 j5k 3 5-2 4-2 2-3 10-1 1 x −3 25-1 23 3− 2 100-1 23. 24. 25. *26. 27. 28. 29. 30. 31. 32. *33. 34. 35. *36. 37. € € € 38. 0.5-2 0.25-1 (-2)-3 a 2b 3 a 3b 2 (6-2)-1 (5a)-3 (10x2y-3)-1 (-2m3)(3m-3) 1 x −4 − 11u 5 g 2 − 9u 3 g 4 − 4a 6 m 5 12a 2 m 6 16 x 5 y 2 2x3 y3 − 5v 4 r 3 − 10v 3 r 5 c 3d 5 3 6 c d 1 −2 3 3 −2 2 x 39. 6x 2 z 3 −1 4 3x z 40. 2a 5b 3 −2 6 5ab € 41. 2 7 € 42. € 43. € 44. € 45. 3 2 2 −2 −1 (8a b ) (4ab ) (6y z) (2y z ) (−4 y z ) 2 5 3 12 8 2 −15w 5 y −3 z 2 −3w 4 y −7 z 7 2x −1 8x 4 3 −2 3y 9y 2 5 −1 (−9b c ) (3b c ) 4 5 € 46. 5w 6 y −3 z 4 −2 5 2 −1 20w y z € (2a ) (−4a ) 3 3 47. € € € 48. 20a 6 50c 3 d −1 −2 2 4 25c d 2 2
© Copyright 2026 Paperzz