FINAL EXAM PRACTICE I. Tangent lines to parametric curves

FINAL EXAM PRACTICE
I. Tangent lines to parametric curves.
1. Find an equation of the tangent line to the curve at the point corresponding to the value of the
parameter:
(a)
x=e  t , y =t−ln t 9 ; t=1
(b)
x=t sin t , y =t cos t ; t=6
(c)
x=cos t t sin t , y =sin t −t cos t ; t=/3
2. Given the parametric curve x=e t cos t , y =e t sin t , find dy/dx at the point corresponding to t =/ 6 .
3. Find the points on the curve x =2cos  , y =sin 2  where the tangent is horizontal or vertical.
II. Areas of regions bounded by parametric curves.
1. Use parametric equations of an ellipse, x=a cos  , y=bsin  , 0≤≤2  , to find the area that it
encloses.
2. Find the area bounded by the curve
x =cost , y =e t , 0≤t≤

, and the lines y = 1 and x = 0.
2
III. Length of a curve given in parametric form
1. Find the length of the curve
x=3 t 2 , y =2 t 3 , 0≤t≤1 .
2. Find the exact length of the parametric curve:
t
t
x=e cos t , y =e sin t , 0≤t ≤

5
1
x= , y=ln t , 1≤t ≤2 .
t
4. The position, in feet, of a particle at time t, in seconds, is given by x=4 t 3, y=2 t 2.
Set up the integral used to find the distance the particle travels in the first 5 seconds.
3. Set up the integral to find the length of the curve
IV. Polar coordinates and cartesian coordinates of a point
1. The polar coordinates of a point are given. Find the cartesian coordinates of the point.
(a) −1,/2
(b) 3, 2/3
(c) 2  2 ,5/ 4
2. The cartesian coordinates of a point are given.
(i) Find polar coordinates r , of the point with r 0 and 0≤2 
(ii) Find polar coordinates r , of the point with r 0 and 0≤2
(a) (– 1, 1)
(b) − 3 ,−1
(c) (2, – 3)
V. Cartesian equation for a curve given in polar form and viceversa.
1. Find a cartesian equation for the curve described by the given polar equation: r =3 sin 
2. Find the polar equation for the curve represented by the given cartesian equation: x + y = 4
3. Find a cartesian equation for the curve =/ 4
6
4. Find a cartesian equation for the curve r =
sin −2cos 
VI. Area of the region bounded by polar curves
1. Find the area of the region that lies inside the first curve and outside the second curve.
r =10sin  , r =5
2. Find the area of the region that lies inside both curves: r =4 sin  , r=4 cos 
3. Find the area enclosed by one loop of the curve r =sin 2
4. Find the area of the region that lies inside the first curve and outside the second curve:
r =3 cos  , r=1cos 
VII. Slope of the tangent line to a given polar curve.
1. Find the points on the curve where the tangent line is horizontal:
r =51−cos 
2. Find the slope of the tangent to the given polar curve at the point specified by the value of  :
1
(a) r = , =

(b) r =sin 3 , =/ 6
(c) r =2−sin  , =/3
VIII. The Taylor series for
f  x  centered at a
1. Find the Taylor polynomial T3 for the function
2. Find the Taylor polynomial T3 for the function
f  x =sin x at a =1.
f  x =ln x at a =1.
3. Find the first four non-zero terms of the Taylor series centered at a = 1 for f  x =  x .
4. (a) Find the first three non-zero terms of the Taylor series of f  x =tan x about x=/ 4.
(b) Use your result from part (a) to approximate tan(.8).
IX. The radius of convergence and interval of convergence of a power series
1. Find the radius of convergence and interval of convergence of each power series:
n
∞
∞
∞
∞
n!12 x n
xn
n xn
n  x2
a. ∑ n 5
b. ∑ −1
c. ∑
d. ∑
n 2n
2n
n=1 5 n
n=1 2 n!
n=1
n=1
X. Definite integral for a volume (washers & shells).
1. Set up, but do not evaluate an integral for finding the volume of the solid obtained by rotating the region
bounded by the given curves about the specified line:
x2
, y=5−x 2 ; about the x-axis.
4
a.
y=
b.
y =sin x , y =0, x=0, x= ; about
x=−1 .
XI. The area enclosed by two curves
1. Sketch the region enclosed by the given curves, and then find the area of the region;

a. y =cos x , y=sin 2 x  with 0≤ x≤
2
2
b. y = x −2 x , y = x4
c.
y = x 2 , y =4 x− x 2
d.
x=2 y , x y =1
2
XII. Use Partial Fraction Decomposition to evaluate the indefinite integral
x−1
dx
1. ∫ 2
x 2 x
dx
dx
2. ∫ 2
x 3 x−4
x 2 −2 x −1
dx
3. ∫
 x −12  x 21
XIII. Evaluate the definite integral (no calculators)
/ 2
1.
∫ sin3  cos2  d 
0
4
2.
∫ t e−t dt
0
1
3.
∫ 2  x13 dx
0
XIV. Evaluate the indefinite integral
1.
2.
∫ 20 x e5 x dx
∫ x cos7 x  dx
3.
sin x
dx
∫ 1cos
2
x
ANSWERS:
I.
16
 x−e 1
e
  31/  3−1
1. (a)
y=−
(b)
y=
x
6 
6
(c)
y −.342=  3  x−1.407
2.
3. horizontal tangent at   2 , 1 ,− 2 ,1 ,  2 ,−1 ,− 2 ,−1 ; vertical tangent at (2, 0), (0,2)
II.

1. a b 
2.
1−e 2
2
III.
2
1. 4  2−2
 2  e −1 
 /5
2.
3.
∫
1
IV.


3
3
− ,3 
2
2


2. (a)(i)  2 , 3
(a)(ii) − 2 , 7
4
4


(b)(i) 2, 7
(b)(ii) −2,
6
6
(c) (i)   13 ,arctan −3/22
1(a) ( 0, – 1)
1(b)







1 1
 dt
t4 t 2
5
4.
∫  4 2 4 t 2 dt
0
1(c) −2,−2 


(c)(ii) − 13 ,arctan −3/ 2
V.
2
1.
  
x 2 y −
3
3
=
2
2
2
2. r =
4
cos sin 
3. y = x
4. y = 2x + 6
VI.
1.
25 25  3

3
2
2. 2 −4 3. /8
4. 
VII.

1. 0,0 , −

15 15  3
15 15  3
,−
, − ,
4
4
4
4

2. (a) −
(b) − 3
VIII.
1. T 3  x =sin 1cos1⋅ x −1−
1
1
2
3
2.  x−1−  x−1   x−1
2
3
sin 1
cos 1
⋅ x −12−
⋅ x−13
2
6
(c)
2−  3
1−2  3
1
1
1
2
3
3. T 4  x =1  x−1−  x−1   x−1
2
8
16
4. (a)
2
   
T 3  x =12 x −


2 x−
4
4
T 3 0.8=1.0296301
(b)
IX.
I =−5,5
1 (a) R = 5,
(b) R = 2,
I =−4, 0
(c) R=0,
{ 12 }
I= −
(d)
R=∞ , I =−∞ , ∞
X.
2
[
 ]
2 2
1. (a) ∫  5− x  − x
4
−2
XI.
1. 1/2
2 2

dx
2. 125/6
(using washers)
∫ 2  x1sin x dx
(b)
(using shells)
0
3. 8/3
4. 9/8
XII.
1.
3 ∣
1
ln x2∣− ln∣x∣C
2
2
XIII.
1. 2/15
2.
2. 1−5 e−4
1 x−1
ln
C
5 x 4
∣ ∣
3. ln∣x −1∣
1
1
− ln  x 21arctan  xC
x−1 2
3. 15/2
XIV.
1.
4
4 x e5x − e 5 x C
5
2.
1
x
cos 7 x  sin7 xC
49
7
3. −arctan cos x C