FINAL EXAM PRACTICE
I. Tangent lines to parametric curves.
1. Find an equation of the tangent line to the curve at the point corresponding to the value of the
parameter:
(a)
x=e t , y =t−ln t 9 ; t=1
(b)
x=t sin t , y =t cos t ; t=6
(c)
x=cos t t sin t , y =sin t −t cos t ; t=/3
2. Given the parametric curve x=e t cos t , y =e t sin t , find dy/dx at the point corresponding to t =/ 6 .
3. Find the points on the curve x =2cos , y =sin 2 where the tangent is horizontal or vertical.
II. Areas of regions bounded by parametric curves.
1. Use parametric equations of an ellipse, x=a cos , y=bsin , 0≤≤2 , to find the area that it
encloses.
2. Find the area bounded by the curve
x =cost , y =e t , 0≤t≤
, and the lines y = 1 and x = 0.
2
III. Length of a curve given in parametric form
1. Find the length of the curve
x=3 t 2 , y =2 t 3 , 0≤t≤1 .
2. Find the exact length of the parametric curve:
t
t
x=e cos t , y =e sin t , 0≤t ≤
5
1
x= , y=ln t , 1≤t ≤2 .
t
4. The position, in feet, of a particle at time t, in seconds, is given by x=4 t 3, y=2 t 2.
Set up the integral used to find the distance the particle travels in the first 5 seconds.
3. Set up the integral to find the length of the curve
IV. Polar coordinates and cartesian coordinates of a point
1. The polar coordinates of a point are given. Find the cartesian coordinates of the point.
(a) −1,/2
(b) 3, 2/3
(c) 2 2 ,5/ 4
2. The cartesian coordinates of a point are given.
(i) Find polar coordinates r , of the point with r 0 and 0≤2
(ii) Find polar coordinates r , of the point with r 0 and 0≤2
(a) (– 1, 1)
(b) − 3 ,−1
(c) (2, – 3)
V. Cartesian equation for a curve given in polar form and viceversa.
1. Find a cartesian equation for the curve described by the given polar equation: r =3 sin
2. Find the polar equation for the curve represented by the given cartesian equation: x + y = 4
3. Find a cartesian equation for the curve =/ 4
6
4. Find a cartesian equation for the curve r =
sin −2cos
VI. Area of the region bounded by polar curves
1. Find the area of the region that lies inside the first curve and outside the second curve.
r =10sin , r =5
2. Find the area of the region that lies inside both curves: r =4 sin , r=4 cos
3. Find the area enclosed by one loop of the curve r =sin 2
4. Find the area of the region that lies inside the first curve and outside the second curve:
r =3 cos , r=1cos
VII. Slope of the tangent line to a given polar curve.
1. Find the points on the curve where the tangent line is horizontal:
r =51−cos
2. Find the slope of the tangent to the given polar curve at the point specified by the value of :
1
(a) r = , =
(b) r =sin 3 , =/ 6
(c) r =2−sin , =/3
VIII. The Taylor series for
f x centered at a
1. Find the Taylor polynomial T3 for the function
2. Find the Taylor polynomial T3 for the function
f x =sin x at a =1.
f x =ln x at a =1.
3. Find the first four non-zero terms of the Taylor series centered at a = 1 for f x = x .
4. (a) Find the first three non-zero terms of the Taylor series of f x =tan x about x=/ 4.
(b) Use your result from part (a) to approximate tan(.8).
IX. The radius of convergence and interval of convergence of a power series
1. Find the radius of convergence and interval of convergence of each power series:
n
∞
∞
∞
∞
n!12 x n
xn
n xn
n x2
a. ∑ n 5
b. ∑ −1
c. ∑
d. ∑
n 2n
2n
n=1 5 n
n=1 2 n!
n=1
n=1
X. Definite integral for a volume (washers & shells).
1. Set up, but do not evaluate an integral for finding the volume of the solid obtained by rotating the region
bounded by the given curves about the specified line:
x2
, y=5−x 2 ; about the x-axis.
4
a.
y=
b.
y =sin x , y =0, x=0, x= ; about
x=−1 .
XI. The area enclosed by two curves
1. Sketch the region enclosed by the given curves, and then find the area of the region;
a. y =cos x , y=sin 2 x with 0≤ x≤
2
2
b. y = x −2 x , y = x4
c.
y = x 2 , y =4 x− x 2
d.
x=2 y , x y =1
2
XII. Use Partial Fraction Decomposition to evaluate the indefinite integral
x−1
dx
1. ∫ 2
x 2 x
dx
dx
2. ∫ 2
x 3 x−4
x 2 −2 x −1
dx
3. ∫
x −12 x 21
XIII. Evaluate the definite integral (no calculators)
/ 2
1.
∫ sin3 cos2 d
0
4
2.
∫ t e−t dt
0
1
3.
∫ 2 x13 dx
0
XIV. Evaluate the indefinite integral
1.
2.
∫ 20 x e5 x dx
∫ x cos7 x dx
3.
sin x
dx
∫ 1cos
2
x
ANSWERS:
I.
16
x−e 1
e
31/ 3−1
1. (a)
y=−
(b)
y=
x
6
6
(c)
y −.342= 3 x−1.407
2.
3. horizontal tangent at 2 , 1 ,− 2 ,1 , 2 ,−1 ,− 2 ,−1 ; vertical tangent at (2, 0), (0,2)
II.
1. a b
2.
1−e 2
2
III.
2
1. 4 2−2
2 e −1
/5
2.
3.
∫
1
IV.
3
3
− ,3
2
2
2. (a)(i) 2 , 3
(a)(ii) − 2 , 7
4
4
(b)(i) 2, 7
(b)(ii) −2,
6
6
(c) (i) 13 ,arctan −3/22
1(a) ( 0, – 1)
1(b)
1 1
dt
t4 t 2
5
4.
∫ 4 2 4 t 2 dt
0
1(c) −2,−2
(c)(ii) − 13 ,arctan −3/ 2
V.
2
1.
x 2 y −
3
3
=
2
2
2
2. r =
4
cos sin
3. y = x
4. y = 2x + 6
VI.
1.
25 25 3
3
2
2. 2 −4 3. /8
4.
VII.
1. 0,0 , −
15 15 3
15 15 3
,−
, − ,
4
4
4
4
2. (a) −
(b) − 3
VIII.
1. T 3 x =sin 1cos1⋅ x −1−
1
1
2
3
2. x−1− x−1 x−1
2
3
sin 1
cos 1
⋅ x −12−
⋅ x−13
2
6
(c)
2− 3
1−2 3
1
1
1
2
3
3. T 4 x =1 x−1− x−1 x−1
2
8
16
4. (a)
2
T 3 x =12 x −
2 x−
4
4
T 3 0.8=1.0296301
(b)
IX.
I =−5,5
1 (a) R = 5,
(b) R = 2,
I =−4, 0
(c) R=0,
{ 12 }
I= −
(d)
R=∞ , I =−∞ , ∞
X.
2
[
]
2 2
1. (a) ∫ 5− x − x
4
−2
XI.
1. 1/2
2 2
dx
2. 125/6
(using washers)
∫ 2 x1sin x dx
(b)
(using shells)
0
3. 8/3
4. 9/8
XII.
1.
3 ∣
1
ln x2∣− ln∣x∣C
2
2
XIII.
1. 2/15
2.
2. 1−5 e−4
1 x−1
ln
C
5 x 4
∣ ∣
3. ln∣x −1∣
1
1
− ln x 21arctan xC
x−1 2
3. 15/2
XIV.
1.
4
4 x e5x − e 5 x C
5
2.
1
x
cos 7 x sin7 xC
49
7
3. −arctan cos x C
© Copyright 2026 Paperzz