Q. Determine whether π(π₯) = 3π₯ 4 β 2π₯ 2 + 5 is even, odd, or neither. A. Even Q. Determine whether π(π₯) = π₯ 3 + π₯ 2 is even, odd, or neither. A. Neither Q. Determine whether π(π₯) = 2π₯ 5 β 7π₯ 3 + 4π₯ is even, odd, or neither. A. Odd Q. If π(π₯) = 3π₯ β 5, find itβs inverse. A. π β1 (π₯) = Q. If π(π₯) = A. π β1 (π₯) = π₯+5 3 1 Q. Solve the equation 35π₯β8 = 9 π₯+2 Q. Expand A. π₯ = 4 A. log π¦ β log π₯ Q. Solve the equation 1 6βπ₯ ( ) =2 2 Q. Expand A. π₯ = 7 A. 2 + 2 log π¦ β 4 log π₯ Q. If $1,000 is invested at a rate of 12% per year compounded monthly, find the principle after 20 years. Q. Expand A. $10,892.55 Q. If $2,500 is invested at a rate of 9.5% per year compounded continuously, find the principle after 15 years. A. log π¦ β 4 log π₯ β log π§ Q. Solve the equation 3 π₯+4 = 21β3π₯ Q. Given π(π₯) = π₯ 2 β 3π₯ and π(π₯) = 2π₯ + 1, find (π β π)(π₯). A. π₯ = β1.1646 A. 4π₯ 2 β 2π₯ β 2 Q. Solve the equation 32β3π₯ = 42π₯+1 Q. Given π(π₯) = π₯ 2 β 3π₯ and π(π₯) = 2π₯ + 1, find (π β π)(π₯). A. π₯ = 0.1336 A. 2π₯ 2 β 6π₯ + 1 Q. Solve the equation 3π₯β7 = 0.2 Q. Given π(π₯) = 3π₯ + 5 and π(π₯) = 2π₯ β 7, find (π β π)(π₯). A. π₯ = β10.2548 A. 6π₯ + 3 Q. Condense log 5 + log 2 Q. Solve the equation 22π₯ + 2 π₯ β 12 = 0 Q. Given π(π₯) = π₯ 2 + 4π₯ β 1 and π(π₯) = π₯ + 2, find (π β π)(π₯). A. 1 A. π₯ = 1.585 A. π₯ 2 + 4π₯ + 1 Q. Solve the equation log π₯ = 1 β log(π₯ β 3) Q. If $3,000 is invested at a rate of 4% per year compounded weekly, find the principle after 20 years. π¦ log ( ) π₯ 100π¦ 2 log ( 4 ) π₯ βπ¦ log ( 4 3 ) π₯ βπ§ 1 1 2 3 A. $10,394.64 Q. Condense , find itβs inverse. 3π₯β2 Q. Evaluate log 5 125 2π₯+1 A. 3 3π₯ 1 3 log π₯ β log π¦ + log π§ 3 π₯3 π§ A. log ( 3 ) A. π₯ = 5 βπ¦ 3 Q. If π(π₯) = βπ₯ + 1, find itβs inverse. Q. Evaluate log 4 A. π β1 (π₯) = (π₯ β 1)3 A. β2 Q. Given π(π₯) = 5π₯ + 2 and π(π₯) = 6π₯ β 1, find (π β π)(π₯). Q. Evaluate π 2+ln 3 A. 30π₯ β 3 Q. Given π(π₯) = 3π₯ β 1 and π(π₯) = 4π₯ 2 , find (π β π)(π₯). A. 12π₯ 2 β 1 1 16 A. 3π 2 Q. Evaluate π1+ln 5 A. 5π Q. Condense 1 3log π¦ + log(π₯ 3 π¦ 6 ) β 5 log π¦ 3 A. log π₯ Q. Solve the equation 6 + 2 ln π₯ = 5 A. $6,674.57 Q. If $2,500 is invested at a rate of 6.5% per year compounded yearly, find the principle after 15 years. A. π₯ = 0.6065 A. $6,429.60 Q. Evaluate log 2 5 to four decimal places. Q. Solve the equation log 3 (π₯ β 5) + log 3 (π₯ + 3) = 2 Q. Evaluate log14 3 to four decimal places. A. 2.3219 A. π₯ = 6 A. 0.4163 Q. Evaluate log17 10 to four decimal places. Q. Solve the equation log 2(π₯ β 6) + log 2(π₯ β 4) β log 2 π₯ = 2 Q. Evaluate log 5 9 to four decimal places. A. 0.8127 A. π₯ = 12 A. 1.3652
© Copyright 2025 Paperzz