Q. Determine whether ( ) = 3 4 βˆ’ 2 2 + 5 is even, odd, or neither

Q. Determine whether 𝑓(π‘₯) =
3π‘₯ 4 βˆ’ 2π‘₯ 2 + 5 is even, odd, or
neither.
A. Even
Q. Determine whether 𝑓(π‘₯) =
π‘₯ 3 + π‘₯ 2 is even, odd, or neither.
A. Neither
Q. Determine whether 𝑓(π‘₯) =
2π‘₯ 5 βˆ’ 7π‘₯ 3 + 4π‘₯ is even, odd, or
neither.
A. Odd
Q. If 𝑓(π‘₯) = 3π‘₯ βˆ’ 5, find it’s
inverse.
A. 𝑓 βˆ’1 (π‘₯) =
Q. If 𝑓(π‘₯) =
A. 𝑓 βˆ’1 (π‘₯) =
π‘₯+5
3
1
Q. Solve the equation
35π‘₯βˆ’8 = 9 π‘₯+2
Q. Expand
A. π‘₯ = 4
A. log 𝑦 βˆ’ log π‘₯
Q. Solve the equation
1 6βˆ’π‘₯
( )
=2
2
Q. Expand
A. π‘₯ = 7
A. 2 + 2 log 𝑦 βˆ’ 4 log π‘₯
Q. If $1,000 is invested at a rate of
12% per year compounded
monthly, find the principle after
20 years.
Q. Expand
A. $10,892.55
Q. If $2,500 is invested at a rate of
9.5% per year compounded
continuously, find the principle
after 15 years.
A. log 𝑦 βˆ’ 4 log π‘₯ βˆ’ log 𝑧
Q. Solve the equation
3 π‘₯+4 = 21βˆ’3π‘₯
Q. Given 𝑓(π‘₯) = π‘₯ 2 βˆ’ 3π‘₯ and
𝑔(π‘₯) = 2π‘₯ + 1, find (𝑓 ∘ 𝑔)(π‘₯).
A. π‘₯ = βˆ’1.1646
A. 4π‘₯ 2 βˆ’ 2π‘₯ βˆ’ 2
Q. Solve the equation
32βˆ’3π‘₯ = 42π‘₯+1
Q. Given 𝑓(π‘₯) = π‘₯ 2 βˆ’ 3π‘₯ and
𝑔(π‘₯) = 2π‘₯ + 1, find (𝑔 ∘ 𝑓)(π‘₯).
A. π‘₯ = 0.1336
A. 2π‘₯ 2 βˆ’ 6π‘₯ + 1
Q. Solve the equation
3π‘₯⁄7 = 0.2
Q. Given 𝑓(π‘₯) = 3π‘₯ + 5 and
𝑔(π‘₯) = 2π‘₯ βˆ’ 7, find (𝑔 ∘ 𝑓)(π‘₯).
A. π‘₯ = βˆ’10.2548
A. 6π‘₯ + 3
Q. Condense
log 5 + log 2
Q. Solve the equation
22π‘₯ + 2 π‘₯ βˆ’ 12 = 0
Q. Given 𝑓(π‘₯) = π‘₯ 2 + 4π‘₯ βˆ’ 1 and
𝑔(π‘₯) = π‘₯ + 2, find (𝑔 ∘ 𝑓)(π‘₯).
A. 1
A. π‘₯ = 1.585
A. π‘₯ 2 + 4π‘₯ + 1
Q. Solve the equation
log π‘₯ = 1 βˆ’ log(π‘₯ βˆ’ 3)
Q. If $3,000 is invested at a rate of
4% per year compounded weekly,
find the principle after 20 years.
𝑦
log ( )
π‘₯
100𝑦 2
log ( 4 )
π‘₯
βˆšπ‘¦
log ( 4 3 )
π‘₯ βˆšπ‘§
1
1
2
3
A. $10,394.64
Q. Condense
, find it’s inverse.
3π‘₯βˆ’2
Q. Evaluate log 5 125
2π‘₯+1
A. 3
3π‘₯
1
3 log π‘₯ βˆ’ log 𝑦 + log 𝑧
3
π‘₯3 𝑧
A. log ( 3 )
A. π‘₯ = 5
βˆšπ‘¦
3
Q. If 𝑓(π‘₯) = √π‘₯ + 1, find it’s
inverse.
Q. Evaluate log 4
A. 𝑓 βˆ’1 (π‘₯) = (π‘₯ βˆ’ 1)3
A. βˆ’2
Q. Given 𝑓(π‘₯) = 5π‘₯ + 2 and
𝑔(π‘₯) = 6π‘₯ βˆ’ 1, find (𝑓 ∘ 𝑔)(π‘₯).
Q. Evaluate 𝑒 2+ln 3
A. 30π‘₯ βˆ’ 3
Q. Given 𝑓(π‘₯) = 3π‘₯ βˆ’ 1 and
𝑔(π‘₯) = 4π‘₯ 2 , find (𝑓 ∘ 𝑔)(π‘₯).
A. 12π‘₯ 2 βˆ’ 1
1
16
A. 3𝑒 2
Q. Evaluate 𝑒1+ln 5
A. 5𝑒
Q. Condense
1
3log 𝑦 + log(π‘₯ 3 𝑦 6 ) βˆ’ 5 log 𝑦
3
A. log π‘₯
Q. Solve the equation
6 + 2 ln π‘₯ = 5
A. $6,674.57
Q. If $2,500 is invested at a rate of
6.5% per year compounded
yearly, find the principle after 15
years.
A. π‘₯ = 0.6065
A. $6,429.60
Q. Evaluate log 2 5 to four decimal
places.
Q. Solve the equation
log 3 (π‘₯ βˆ’ 5) + log 3 (π‘₯ + 3) = 2
Q. Evaluate log14 3 to four decimal
places.
A. 2.3219
A. π‘₯ = 6
A. 0.4163
Q. Evaluate log17 10 to four
decimal places.
Q. Solve the equation
log 2(π‘₯ βˆ’ 6) + log 2(π‘₯ βˆ’ 4) βˆ’ log 2 π‘₯ = 2
Q. Evaluate log 5 9 to four decimal
places.
A. 0.8127
A. π‘₯ = 12
A. 1.3652