Sept 13, 2011 MATH 140: Calculus I Tutorial 1 Some Noteworthy Functions Exp(x) Ln(x) 4 2 2 ln(x) exp(x) 3 1 0 -1 0 -2 0 x -4 1 0 x2 5 x 10 x3 100 1000 80 500 x3 x2 60 0 40 -500 20 0 -10 0 x 10 -1000 -10 0 x 10 Problem 1 Simplify b8 (2b)4 . Solution: b8 (2b)4 = b8 24 b4 = 16b(8+4) = 16b12 Page 1 of 4 Sept 13, 2011 MATH 140: Calculus I Tutorial 1 Problem 2 Sketch f (x) = 1 − 12 e−x . Solution: 1-1/2 e-x 2 0 f(x) -2 -4 -6 -8 -10 -3 -2 -1 0 x 1 2 3 Problem 3 Sketch f (x) = e|x| . Solution: e|x| 60 50 f(x) 40 30 20 10 0 -4 -3 -2 -1 0 x 1 2 3 4 Page 2 of 4 Sept 13, 2011 MATH 140: Calculus I Tutorial 1 Problem 4 Simplify the following: log5 (125). Solution: log5 (125) = log5 (5 · 5 · 5) = log5 (53 ) = 3. Problem 5 Simplify the following: ln( 1e ). Solution: ln(1/e) = ln(e−1 ) = −1. Problem 6 Simplify the following: e−2 ln 5 . Solution: e−2 ln 5 = eln 5 −2 = 5−2 Problem 7 Simplify the following: ln(a + b) + ln(a − b) − 2 ln(c). Solution: ln(a + b) + ln(a − b) − 2 ln(c) = ln((a + b)(a − b)) − 2 ln(c) = ln (a + b)(a − b) c2 Page 3 of 4 Sept 13, 2011 MATH 140: Calculus I Tutorial 1 Problem 8 Find the inverse: f (x) = 1 + Solution: √ 2 + 3x. y =1+ y−1= √ √ 2 + 3x 2 + 3x 2 (y − 1) = 2 + 3x (y − 1)2 − 2 = 3x (y − 1)2 − 2 =x 3 Therefore f −1 (y) = (y−1)2 −2 . 3 Page 4 of 4
© Copyright 2025 Paperzz