Name: ______________________ Class: _________________ Date: _________ ID: A ALGEBRA 2 FINAL EXAM REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. ____ ____ 1. Classify –6x5 + 4x3 + 3x2 + 11 by degree. a. quintic b. cubic c. d. quartic quadratic 2. Classify 8x4 + 7x3 + 5x2 + 8 by number of terms. a. trinomial c. polynomial of 5 terms b. binomial d. polynomial of 4 terms Consider the leading term of each polynomial function. What is the end behavior of the graph? ____ ____ 8 7 6 3. 5x ! 2x ! 8x + 1 a. The leading term down and up. b. The leading term down. c. The leading term up and up. d. The leading term and down. 5 4 8 is 5x . Since n is even and a is positive, the end behavior is 8 is 5x . Since n is even and a is positive, the end behavior is up and 8 is 5x . Since n is even and a is positive, the end behavior is 8 is 5x . Since n is even and a is positive, the end behavior is down 3 4. !3x + 9x + 5x + 3 a. The leading term up. b. The leading term down and down. c. The leading term up and down. d. The leading term and up. 5 is !3x . Since n is odd and a is negative, the end behavior is up and 5 is !3x . Since n is odd and a is negative, the end behavior is 5 is !3x . Since n is odd and a is negative, the end behavior is 5 is !3x . Since n is odd and a is negative, the end behavior is down Write the polynomial in factored form. ____ 5. x3 + 9x2 + 18x a. 6x(x + 1)(x + 3) b. 3x(x + 6)(x + 1) c. d. 1 x(x + 6)(x – 3) x(x + 3)(x + 6) Name: ______________________ ID: A What are the zeros of the function? Graph the function. ____ 6. y = x(x ! 2)(x + 5) a. 2, –5 b. ____ 0, –2, 5 7. Divide 4x 3 + 2x 2 + 3x + 4 by x + 4. a. 4x 2 ! 14x + 59 b. 4x 2 + 18x ! 53, R 240 c. 0, 2, –5 d. 2, –5, –2 c. d. 4x 2 ! 14x + 59, R –232 4x 2 + 18x ! 53 c. d. !6x + 30x ! 19, R –20 2 6x ! 30x + 19, R 20 Divide using synthetic division. ____ 3 2 8. Divide !6x + 18x ! 7x ! 10 by (x ! 2). a. b. 2 !6x + 6x + 5 2 6x ! 6x ! 5 2 2 Name: ______________________ ____ ID: A 9. Use the Rational Root Theorem to list all possible rational roots of the polynomial equation x 3 ! 6x 2 + 4x + 9 = 0. Do not find the actual roots. a. –9, –1, 1, 9 c. –9, –3, –1, 1, 3, 9 b. 1, 3, 9 d. no roots Use Pascal’s Triangle to expand the binomial. ____ 10. (d ! 2) 6 a. d 6 + 12d 5 + 60d 4 + 160d 3 b. d 6 ! 6d 5 + 15d 4 ! 20d 3 + c. d 6 ! 12d 5 + 60d 4 ! 160d 3 d. d 6 + 6d 5 + 15d 4 + 20d 3 + + 240d 2 + 192d + + 64 15d 2 ! 6d + 1 + 240d 2 ! 192d + 64 15d 2 + 6d + 1 ____ 11. Find all the real square roots of 0.0004. a. 0.00632 and –0.00632 b. 0.06325 and –0.06325 c. d. 0.0002 and –0.0002 0.02 and –0.02 c. ! c. 11 c. x 7 !x d. ! 42x Find the real-number root. ____ 12. 3 a. ! 125 343 25 49 b. ! 125 343 125 1029 d. ! 5 7 Multiply and simplify if possible. ____ 13. 4 a. ____ 14. a. b. 11 " 4 3 3 b. Ê 7x ÁÁÁÁ Ë x !7 7 x 7 ! 49 x 7x ! 49x 11 4 3 d. ˜ˆ˜ ˜˜ ¯ 49 What is the simplest form of the expression? ____ 15. 3 a. b. 108a 16 b 9 3a 5 b 3 4a 5 b 3 3 3 3 4a c. 3a 5 b 3a d. none of these 3 a 4 33 Name: ______________________ ID: A What is the simplest form of the product? 7 ____ 16. 7 50x y " 4 6 a. 2x y b. 10x y 4 6xy 4 4 6 75y c. 5x y 3y d. 30x y 5 4 12 5 y What is the simplest form of the quotient? 3 ____ 17. 162 3 a. 2 3 3 3 b. 3 162 c. 3 3 3 d. 3 What is the simplest form of the radical expression? ____ 18. 3 2a ! 6 a. !6 b. 9 2a 2a 2a c. !3 2a d. not possible to simplify What is the simplest form of the expression? ____ 19. 20 + 45 ! 5 a. 4 5 c. 13 b. 6 5 d. 5 5 5 What is the product of the radical expression? Ê ____ 20. ÁÁÁÁ 7 ! Ë ____ 21. 2 ˜ˆ˜ ÁÊÁ 8 + ˜˜ ÁÁ ¯Ë a. 54 + 56 b. 54 ! 2 ˜ˆ˜ ˜˜ ¯ 2 2 ÊÁ ˆÊ ÁÁ 5 ! 2 ˜˜˜ ÁÁÁ 5 + ÁË ˜¯ ÁË a. 23 b. 20 c. 13 + 15 2 d. 58 + 56 2 c. d. 27 18 ˆ 2 ˜˜˜˜ ¯ 4 3 Name: ______________________ ID: A How can you write the expression with rationalized denominator? ____ 22. 3 ! 6 3 + 6 !1 ! 2 a. 18 3 !3 ! 2 b. 18 9 c. !3 + 2 2 d. 9 !2 18 ____ 23. 2 + 3 3 3 6 2 a. 3 6 +9 3 18 c. 6 2 b. 3 36 + 3 3 2 d. 6 2 3 6 +9 3 4 6 2 3 36 + 3 3 4 6 Simplify. 1 ____ 24. 3 1 3 "9 a. ____ 25. 16 a. b. 3 9 b. 3 3 c. 3 d. 3 1 2 16 4 2 c. d. 16 2 16 3 ____ 26. Write the exponential expression 3x 8 in radical form. a. 3 8 x3 b. 8 3x 3 c. 3 3 3 x8 d. 3 8 What is the solution of the equation? ____ 27. 2x + 8 ! 6 = !4 a. 4 b. –2 c. 12 d. –3 b. 2 c. 26 d. 38 3 ____ 28. ( x + 6 ) a. 14 5 = 8 5 8 x3 Name: ______________________ ID: A ____ 29. Let f(x) = 4x ! 5 and g(x) = 6x ! 3. Find f(x) ! g(x). a. 10x – 8 b. 10x – 2 c. –2x – 8 d. –2x – 2 d. –10 ____ 30. Let f(x) = 3x + 2 and g(x) = 7x + 6. Find f " g and its domain. 2 a. 6x 2 + 4x + 42; all real numbers except x = ! 3 b. 6x 2 + 4x + 42; all real numbers c. 21x 2 + 32x + 12; all real numbers 6 d. 21x 2 + 32x + 12; all real numbers except x = ! 7 ____ 31. Let f(x) = x 2 ! 16 and g(x) = x + 4. Find a. b. c. d. x + 4; x + 4; x ! 4; x ! 4; all all all all real real real real numbers numbers numbers numbers except except except except f g and its domain. x#4 x # !4 x#4 x # !4 ____ 32. Let f(x) = x + 2 and g(x) = x 2 . Find ÊÁË g û f ˆ˜¯ ( !5 ) . a. 9 b. –3 c. 49 What is the inverse of the given relation? ____ 33. y = 7x 2 ! 3. a. y = ± b. x = x+3 7 y+3 7 ____ 34. y = 3x + 9 1 a. y = x + 3 3 b. y = 3x ! 3 x!3 7 c. y2 = d. y = ± c. y = 3x + 3 d. y= 6 x!3 7 1 x!3 3 Name: ______________________ ID: A Graph the exponential function. ____ 35. y = 4 x a. b. c. d. ____ 36. Suppose you invest $1600 at an annual interest rate of 4.6% compounded continuously. How much will you have in the account after 4 years? a. $800.26 b. $6,701.28 c. $10,138.07 d. $1,923.23 ____ 37. How much money invested at 5% compounded continuously for 3 years will yield $820? a. $952.70 b. $818.84 c. $780.01 d. $705.78 Write the equation in logarithmic form. ____ 38. 2 5 = 32 a. log 32 = 5 " 2 b. log 2 32 = 5 c. d. 7 log 32 = 5 log 5 32 = 2 Name: ______________________ ID: A Evaluate the logarithm. ____ 39. log 5 a. 1 625 –3 b. 5 c. –4 d. 4 b. –5 c. 4 d. 3 b. –2 c. 2 d. 10 ____ 40. log 3 243 a. 5 ____ 41. log 0.01 a. –10 Write the expression as a single logarithm. ____ 42. 3 log b q + 6 log b v a. b. log b (q 3 v 6 ) Ê 3 + 6 ˆ˜ ˜˜ log b ÁÁÁÁ qv ˜¯ Ë c. d. ( 3 + 6 ) log b ÊÁË q + v ˆ˜¯ Ê 3 6ˆ log b ÁÁÁÁ q + v ˜˜˜˜ Ë ¯ ____ 43. log 3 4 ! log 3 2 a. log 3 2 b. log 3 2 c. log 2 d. Expand the logarithmic expression. ____ 44. log 3 d 12 log 3 d a. log 3 d ! log 3 12 c. b. !d log 3 12 d. log 3 12 ! log 3 d log 3 12 ____ 45. log 3 11 p 3 a. log 3 11 " 3 log 3 p c. log 3 11 + 3 log 3 p b. log 3 11 ! 3 log 3 p d. 11 log 3 p ____ 46. Use the Change of Base Formula to evaluate log 7 28. a. b. 1.712 3.332 c. d. 8 1.712 1.447 3 log 2 Name: ______________________ ID: A Solve the exponential equation. ____ 47. 1 = 64 4x ! 3 16 1 a. 12 ____ 48. 4 b. 1 4 c. 7 12 d. 11 12 b. 8 3 c. 3 8 d. 2 4x =8 3 a. 4 Solve the logarithmic equation. ____ 49. 3 log 2x = 4 a. 10.7722 b. 5 Round to the nearest ten-thousandth if necessary. c. 2.7826 d. 0.6309 6 ____ 50. Find the horizontal asymptote of the graph of y = !4x + 6x + 3 6 . a. y=1 c. 8x + 9x + 3 y=0 b. 1 y=! 2 d. no horizontal asymptote Simplify the rational expression. State any restrictions on the variable. 2 ____ 51. p ! 4p ! 32 p +4 !p + 8; p # !4 p ! 8; p # !4 a. b. c. d. !p ! 8; p # 4 p + 8; p # 4 2 ____ 52. q + 11q + 24 2 q ! 5q ! 24 q +8 a. ; q # !3, q # !8 q !8 !(q + 8) b. ;q # 8 q !8 c. d. 9 q +8 ; q # !3, q # 8 q !8 !(q + 8) ; q # !3, q # 8 q !8 Name: ______________________ ID: A What is the product in simplest form? State any restrictions on the variable. ____ 53. 4a 5 7b 4 a. " 2b 2 2a 4 4a 9 7b 6 4a b. 7b 2 , a # 0, b # 0 c. , a # 0, b # 0 d. 7b 4a 2 , a # 0, b # 0 4 9 6 a b , a # 0, b # 0 7 What is the quotient in simplified form? State any restrictions on the variable. ____ 54. x+2 ÷ x+4 2 x!1 x + 4x ! 5 (x + 2)(x + 5) a. , x # ! 5, ! 4 x+4 (x + 2)(x + 4) b. , x # 1, ! 5 2 (x ! 1) (x + 5) c. d. (x + 2)(x + 4) , x # 1, ! 5, ! 4 2 (x ! 1) (x + 5) (x + 2)(x + 5) , x # 1, ! 4 x+4 Simplify the sum. ____ 55. 7 + a +8 a. 7 2 a ! 64 7a ! 49 (a ! 8)(a + 8) 14 b. 2 a + a ! 56 c. 14 (a ! 8)(a + 8) d. 7a + 63 (a ! 8)(a + 8) Simplify the difference. 2 ____ 56. b ! 2b ! 8 2 b +b !2 a. ! 6 b !1 b ! 10 c. 2 b. b ! 2b ! 14 2 b +b !2 d. 10 b !4 b !1 b ! 10 b !1 Name: ______________________ ID: A Simplify the complex fraction. 2 ____ 57. 5t 1 2t ! + a. 3 3t 1 2t 3 ! 5 b. !4 c. ! 5 3 d. ! 1 4 d. ! 11 3 d. 6 4 ____ 58. x+3 1 +3 x 12x + 4 a. 2 x + 3x 4x b. 3x + 9 c. 4x 2 3x + 10x + 3 d. not here c. ! c. –9 and –6 Solve the equation. Check the solution. ____ 59. !2 x+4 4 x+3 13 ! 6 a. ____ 60. = a 2 a ! 36 a. –9 b. + 2 a !6 = !11 8 3 1 a +6 b. –6 11 ID: A ALGEBRA 2 FINAL EXAM REVIEW Answer Section MULTIPLE CHOICE 1. ANS: OBJ: TOP: KEY: DOK: 2. ANS: OBJ: TOP: KEY: DOK: 3. ANS: OBJ: STA: TOP: KEY: 4. ANS: OBJ: STA: TOP: KEY: 5. ANS: REF: OBJ: STA: TOP: KEY: 6. ANS: REF: OBJ: STA: TOP: DOK: 7. ANS: OBJ: STA: TOP: DOK: 8. ANS: OBJ: STA: TOP: DOK: A PTS: 1 DIF: L2 REF: 5-1 Polynomial Functions 5-1.1 To classify polynomials STA: MA.912.A.2.5| MA.912.A.4.5 5-1 Problem 1 Classifying Polynomials degree of a polynomial | polynomial function | standard form of a polynomial function DOK 1 D PTS: 1 DIF: L2 REF: 5-1 Polynomial Functions 5-1.1 To classify polynomials STA: MA.912.A.2.5| MA.912.A.4.5 5-1 Problem 1 Classifying Polynomials degree of a polynomial | polynomial function | standard form of a polynomial function DOK 1 C PTS: 1 DIF: L2 REF: 5-1 Polynomial Functions 5-1.2 To graph polynomial functions and describe end behavior MA.912.A.2.5| MA.912.A.4.5 5-1 Problem 2 Describing End Behavior of Polynomial Functions polynomial | end behavior DOK: DOK 1 C PTS: 1 DIF: L3 REF: 5-1 Polynomial Functions 5-1.2 To graph polynomial functions and describe end behavior MA.912.A.2.5| MA.912.A.4.5 5-1 Problem 2 Describing End Behavior of Polynomial Functions polynomial | end behavior DOK: DOK 1 D PTS: 1 DIF: L2 5-2 Polynomials, Linear Factors, and Zeros 5-2.1 To analyze the factored form of a polynomial MA.912.A.4.3| MA.912.A.4.5| MA.912.A.4.7| MA.912.A.4.8 5-2 Problem 1 Writing a Polynomial in Factored Form DOK: DOK 2 C PTS: 1 DIF: L3 5-2 Polynomials, Linear Factors, and Zeros 5-2.1 To analyze the factored form of a polynomial MA.912.A.4.3| MA.912.A.4.5| MA.912.A.4.7| MA.912.A.4.8 5-2 Problem 2 Finding Zeros of a Polynomial Function DOK 2 C PTS: 1 DIF: L2 REF: 5-4 Dividing Polynomials 5-4.1 To divide polynomials using long division MA.912.A.4.3| MA.912.A.4.4| MA.912.A.4.6 5-4 Problem 1 Using Polynomial Long Division KEY: DOK 2 A PTS: 1 DIF: L3 REF: 5-4 Dividing Polynomials 5-4.2 To divide polynomials using synthetic division MA.912.A.4.3| MA.912.A.4.4| MA.912.A.4.6 5-4 Problem 3 Using Synthetic Division KEY: synthetic division DOK 2 1 ID: A 9. ANS: REF: OBJ: STA: KEY: 10. ANS: OBJ: TOP: DOK: 11. ANS: OBJ: TOP: DOK: 12. ANS: OBJ: TOP: DOK: 13. ANS: REF: OBJ: TOP: DOK: 14. ANS: REF: OBJ: TOP: DOK: 15. ANS: REF: OBJ: TOP: DOK: 16. ANS: REF: OBJ: TOP: DOK: 17. ANS: REF: OBJ: TOP: DOK: 18. ANS: OBJ: TOP: KEY: C PTS: 1 DIF: L2 5-5 Theorems About Roots of Polynomial Equations 5-5.1 To solve equations using the Rational Root Theorem MA.912.A.4.6| MA.912.A.4.7 TOP: 5-5 Problem 1 Finding a Rational Root Rational Root Theorem DOK: DOK 1 C PTS: 1 DIF: L2 REF: 5-7 The Binomial Theorem 5-7.1 To expand a binomial using Pascal's Triangle STA: MA.912.A.4.12 5-7 Problem 1 Using Pascal's Triangle KEY: Pascal's Triangle | expand DOK 2 D PTS: 1 DIF: L4 REF: 6-1 Roots and Radical Expressions 6-1.1 To find nth roots STA: MA.912.A.10.3 6-1 Problem 1 Finding All Real Roots KEY: nth root DOK 1 D PTS: 1 DIF: L3 REF: 6-1 Roots and Radical Expressions 6-1.1 To find nth roots STA: MA.912.A.10.3 6-1 Problem 2 Finding Roots KEY: radicand | index | nth root DOK 1 D PTS: 1 DIF: L2 6-2 Multiplying and Dividing Radical Expressions 6-2.1 To multiply and divide radical expressions STA: MA.912.A.6.2| MA.912.A.10.3 6-2 Problem 1 Multiplying Radical Expressions KEY: DOK 1 A PTS: 1 DIF: L4 6-2 Multiplying and Dividing Radical Expressions 6-2.1 To multiply and divide radical expressions STA: MA.912.A.6.2| MA.912.A.10.3 6-2 Problem 1 Multiplying Radical Expressions KEY: DOK 2 A PTS: 1 DIF: L3 6-2 Multiplying and Dividing Radical Expressions 6-2.1 To multiply and divide radical expressions STA: MA.912.A.6.2| MA.912.A.10.3 6-2 Problem 2 Simplifying a Radical Expression KEY: simplest form of a radical DOK 1 B PTS: 1 DIF: L3 6-2 Multiplying and Dividing Radical Expressions 6-2.1 To multiply and divide radical expressions STA: MA.912.A.6.2| MA.912.A.10.3 6-2 Problem 3 Simplifying a Product KEY: simplest form of a radical DOK 2 A PTS: 1 DIF: L2 6-2 Multiplying and Dividing Radical Expressions 6-2.1 To multiply and divide radical expressions STA: MA.912.A.6.2| MA.912.A.10.3 6-2 Problem 4 Dividing Radical Expressions KEY: simplest form of a radical DOK 1 C PTS: 1 DIF: L2 REF: 6-3 Binomial Radical Expressions 6-3.1 To add and subtract radical expressions STA: MA.912.A.6.2 6-3 Problem 1 Adding and Subtracting Radical Expressions like radicals DOK: DOK 1 2 ID: A 19. ANS: OBJ: TOP: DOK: 20. ANS: OBJ: TOP: DOK: 21. ANS: OBJ: TOP: 22. ANS: OBJ: TOP: 23. ANS: OBJ: TOP: 24. ANS: OBJ: TOP: KEY: 25. ANS: OBJ: TOP: KEY: 26. ANS: OBJ: TOP: KEY: 27. ANS: REF: OBJ: STA: TOP: DOK: 28. ANS: REF: OBJ: STA: TOP: DOK: 29. ANS: OBJ: TOP: 30. ANS: OBJ: TOP: A PTS: 1 DIF: L3 REF: 6-3 Binomial Radical Expressions 6-3.1 To add and subtract radical expressions STA: MA.912.A.6.2 6-3 Problem 3 Simplifying Before Adding or Subtracting DOK 2 B PTS: 1 DIF: L2 REF: 6-3 Binomial Radical Expressions 6-3.1 To add and subtract radical expressions STA: MA.912.A.6.2 6-3 Problem 4 Multiplying Binomial Radical Expressions DOK 1 A PTS: 1 DIF: L3 REF: 6-3 Binomial Radical Expressions 6-3.1 To add and subtract radical expressions STA: MA.912.A.6.2 6-3 Problem 5 Multiplying Conjugates DOK: DOK 1 C PTS: 1 DIF: L3 REF: 6-3 Binomial Radical Expressions 6-3.1 To add and subtract radical expressions STA: MA.912.A.6.2 6-3 Problem 6 Rationalizing the Denominator DOK: DOK 1 D PTS: 1 DIF: L2 REF: 6-3 Binomial Radical Expressions 6-3.1 To add and subtract radical expressions STA: MA.912.A.6.2 6-3 Problem 6 Rationalizing the Denominator DOK: DOK 1 C PTS: 1 DIF: L3 REF: 6-4 Rational Exponents 6-4.1 To simplify expressions with rational exponents STA: MA.912.A.6.3| MA.912.A.6.4 6-4 Problem 1 Simplifying Expressions with Rational Exponents rational exponents DOK: DOK 1 B PTS: 1 DIF: L2 REF: 6-4 Rational Exponents 6-4.1 To simplify expressions with rational exponents STA: MA.912.A.6.3| MA.912.A.6.4 6-4 Problem 1 Simplifying Expressions with Rational Exponents rational exponents DOK: DOK 1 A PTS: 1 DIF: L2 REF: 6-4 Rational Exponents 6-4.1 To simplify expressions with rational exponents STA: MA.912.A.6.3| MA.912.A.6.4 6-4 Problem 2 Converting Between Exponential and Radical Form rational exponents DOK: DOK 1 B PTS: 1 DIF: L2 6-5 Solving Square Root and Other Radical Equations 6-5.1 To solve square root and other radical equations MA.912.A.6.4| MA.912.A.6.5| MA.912.A.10.3 6-5 Problem 1 Solving a Square Root Equation KEY: square root equation DOK 2 C PTS: 1 DIF: L3 6-5 Solving Square Root and Other Radical Equations 6-5.1 To solve square root and other radical equations MA.912.A.6.4| MA.912.A.6.5| MA.912.A.10.3 6-5 Problem 2 Solving Other Radical Equations KEY: radical equation DOK 2 D PTS: 1 DIF: L3 REF: 6-6 Function Operations 6-6.1 To add, subtract, multiply, and divide functions STA: MA.912.A.2.7| MA.912.A.2.8 6-6 Problem 1 Adding and Subtracting Functions DOK: DOK 2 C PTS: 1 DIF: L3 REF: 6-6 Function Operations 6-6.1 To add, subtract, multiply, and divide functions STA: MA.912.A.2.7| MA.912.A.2.8 6-6 Problem 2 Multiplying and Dividing Functions DOK: DOK 2 3 ID: A 31. ANS: OBJ: TOP: 32. ANS: OBJ: TOP: DOK: 33. ANS: REF: OBJ: TOP: DOK: 34. ANS: REF: OBJ: TOP: DOK: 35. ANS: REF: OBJ: STA: TOP: DOK: 36. ANS: REF: OBJ: STA: TOP: DOK: 37. ANS: REF: OBJ: STA: TOP: DOK: 38. ANS: REF: OBJ: STA: TOP: KEY: 39. ANS: REF: OBJ: STA: TOP: DOK: D PTS: 1 DIF: L3 REF: 6-6 Function Operations 6-6.1 To add, subtract, multiply, and divide functions STA: MA.912.A.2.7| MA.912.A.2.8 6-6 Problem 2 Multiplying and Dividing Functions DOK: DOK 2 A PTS: 1 DIF: L3 REF: 6-6 Function Operations 6-6.2 To find the composite of two functions STA: MA.912.A.2.7| MA.912.A.2.8 6-6 Problem 3 Composing Functions KEY: composite function DOK 2 A PTS: 1 DIF: L3 6-7 Inverse Relations and Functions 6-7.1 To find the inverse of a relation or function STA: MA.912.A.2.11 6-7 Problem 2 Finding an Equation for the Inverse KEY: inverse relation DOK 2 D PTS: 1 DIF: L3 6-7 Inverse Relations and Functions 6-7.1 To find the inverse of a relation or function STA: MA.912.A.2.11 6-7 Problem 2 Finding an Equation for the Inverse KEY: inverse relation DOK 2 D PTS: 1 DIF: L2 7-1 Exploring Exponential Models 7-1.1 To model exponential growth and decay MA.912.A.8.1| MA.912.A.8.3| MA.912.A.8.7 7-1 Problem 1 Graphing an Exponential Function KEY: exponential function DOK 2 D PTS: 1 DIF: L2 7-2 Properties of Exponential Functions 7-2.2 To graph exponential functions that have base e MA.912.A.2.5| MA.912.A.2.10| MA.912.A.8.1| MA.912.A.8.3| MA.912.A.8.7 7-2 Problem 5 Continuously Compounded Interest KEY: continuously compounded interest DOK 2 D PTS: 1 DIF: L3 7-2 Properties of Exponential Functions 7-2.2 To graph exponential functions that have base e MA.912.A.2.5| MA.912.A.2.10| MA.912.A.8.1| MA.912.A.8.3| MA.912.A.8.7 7-2 Problem 5 Continuously Compounded Interest KEY: continuously compounded interest DOK 2 B PTS: 1 DIF: L2 7-3 Logarithmic Functions as Inverses 7-3.1 To write and evaluate logarithmic expressions MA.912.A.2.5| MA.912.A.2.11| MA.912.A.8.1| MA.912.A.8.3 7-3 Problem 1 Writing Exponential Equations in Logarithmic Form logarithm DOK: DOK 2 C PTS: 1 DIF: L3 7-3 Logarithmic Functions as Inverses 7-3.1 To write and evaluate logarithmic expressions MA.912.A.2.5| MA.912.A.2.11| MA.912.A.8.1| MA.912.A.8.3 7-3 Problem 2 Evaluating a Logarithm KEY: logarithm DOK 2 4 ID: A 40. ANS: REF: OBJ: STA: TOP: DOK: 41. ANS: REF: OBJ: STA: TOP: DOK: 42. ANS: OBJ: TOP: 43. ANS: OBJ: TOP: 44. ANS: OBJ: TOP: 45. ANS: OBJ: TOP: 46. ANS: OBJ: TOP: DOK: 47. ANS: REF: OBJ: TOP: KEY: 48. ANS: REF: OBJ: TOP: KEY: 49. ANS: REF: OBJ: TOP: DOK: 50. ANS: REF: OBJ: TOP: DOK: A PTS: 1 DIF: L2 7-3 Logarithmic Functions as Inverses 7-3.1 To write and evaluate logarithmic expressions MA.912.A.2.5| MA.912.A.2.11| MA.912.A.8.1| MA.912.A.8.3 7-3 Problem 2 Evaluating a Logarithm KEY: logarithm DOK 2 B PTS: 1 DIF: L4 7-3 Logarithmic Functions as Inverses 7-3.1 To write and evaluate logarithmic expressions MA.912.A.2.5| MA.912.A.2.11| MA.912.A.8.1| MA.912.A.8.3 7-3 Problem 2 Evaluating a Logarithm KEY: logarithm DOK 2 A PTS: 1 DIF: L3 REF: 7-4 Properties of Logarithms 7-4.1 To use the properties of logarithms STA: MA.912.A.8.2| MA.912.A.8.6 7-4 Problem 1 Simplifying Logarithms DOK: DOK 2 A PTS: 1 DIF: L2 REF: 7-4 Properties of Logarithms 7-4.1 To use the properties of logarithms STA: MA.912.A.8.2| MA.912.A.8.6 7-4 Problem 1 Simplifying Logarithms DOK: DOK 2 A PTS: 1 DIF: L2 REF: 7-4 Properties of Logarithms 7-4.1 To use the properties of logarithms STA: MA.912.A.8.2| MA.912.A.8.6 7-4 Problem 2 Expanding Logarithms DOK: DOK 2 C PTS: 1 DIF: L3 REF: 7-4 Properties of Logarithms 7-4.1 To use the properties of logarithms STA: MA.912.A.8.2| MA.912.A.8.6 7-4 Problem 2 Expanding Logarithms DOK: DOK 2 A PTS: 1 DIF: L3 REF: 7-4 Properties of Logarithms 7-4.1 To use the properties of logarithms STA: MA.912.A.8.2| MA.912.A.8.6 7-4 Problem 3 Using the Change of Base Formula KEY: Change of Base Formula DOK 2 C PTS: 1 DIF: L4 7-5 Exponential and Logarithmic Equations 7-5.1 To solve exponential and logarithmic equations STA: MA.912.A.8.5 7-5 Problem 1 Solving an Exponential Equation – Common Base exponential equation DOK: DOK 2 C PTS: 1 DIF: L2 7-5 Exponential and Logarithmic Equations 7-5.1 To solve exponential and logarithmic equations STA: MA.912.A.8.5 7-5 Problem 1 Solving an Exponential Equation – Common Base exponential equation DOK: DOK 2 A PTS: 1 DIF: L2 7-5 Exponential and Logarithmic Equations 7-5.1 To solve exponential and logarithmic equations STA: MA.912.A.8.5 7-5 Problem 5 Solving a Logarithmic Equation KEY: logarithmic equation DOK 2 B PTS: 1 DIF: L3 8-3 Rational Functions and Their Graphs 8-3.1 To identify properties of rational functions STA: MA.912.A.5.6 8-3 Problem 3 Finding Horizontal Asymptotes KEY: rational function DOK 2 5 ID: A 51. ANS: OBJ: TOP: DOK: 52. ANS: OBJ: TOP: DOK: 53. ANS: OBJ: TOP: DOK: 54. ANS: OBJ: TOP: DOK: 55. ANS: REF: OBJ: TOP: 56. ANS: REF: OBJ: TOP: 57. ANS: REF: OBJ: TOP: DOK: 58. ANS: REF: OBJ: TOP: DOK: 59. ANS: OBJ: KEY: 60. ANS: OBJ: KEY: B PTS: 1 DIF: L2 8-4.1 To simplify rational expressions 8-4 Problem 1 Simplifying a Rational Expression DOK 2 C PTS: 1 DIF: L3 8-4.1 To simplify rational expressions 8-4 Problem 1 Simplifying a Rational Expression DOK 2 B PTS: 1 DIF: L2 8-4.2 To multiply and divide rational expressions 8-4 Problem 2 Multiplying Rational Expressions DOK 2 D PTS: 1 DIF: L3 8-4.2 To multiply and divide rational expressions 8-4 Problem 3 Dividing Rational Expressions DOK 2 A PTS: 1 DIF: L2 8-5 Adding and Subtracting Rational Expressions 8-5.1 To add and subtract rational expressions 8-5 Problem 2 Adding Rational Expressions D PTS: 1 DIF: L3 8-5 Adding and Subtracting Rational Expressions 8-5.1 To add and subtract rational expressions 8-5 Problem 3 Subtracting Rational Expressions A PTS: 1 DIF: L2 8-5 Adding and Subtracting Rational Expressions 8-5.1 To add and subtract rational expressions 8-5 Problem 4 Simplifying a Complex Fraction DOK 2 C PTS: 1 DIF: L3 8-5 Adding and Subtracting Rational Expressions 8-5.1 To add and subtract rational expressions 8-5 Problem 4 Simplifying a Complex Fraction DOK 2 D PTS: 1 DIF: L2 8-6.1 To solve rational equations TOP: 8-6 Problem rational equation DOK: DOK 2 A PTS: 1 DIF: L4 8-6.1 To solve rational equations TOP: 8-6 Problem rational equation DOK: DOK 2 6 REF: 8-4 Rational Expressions STA: MA.912.A.10.3 KEY: rational expression | simplest form REF: 8-4 Rational Expressions STA: MA.912.A.10.3 KEY: rational expression | simplest form REF: 8-4 Rational Expressions STA: MA.912.A.10.3 KEY: rational expression | simplest form REF: 8-4 Rational Expressions STA: MA.912.A.10.3 KEY: rational expression | simplest form DOK: DOK 2 DOK: DOK 2 KEY: complex fraction KEY: complex fraction REF: 8-6 Solving Rational Equations 1 Solving a Rational Equation REF: 8-6 Solving Rational Equations 1 Solving a Rational Equation
© Copyright 2026 Paperzz