4. Introduction to Ion-Solid Interactions (the two-body collision) So, how much energy can be transferred from a projectile particle, such as an ion, to a lattice atom in a target solid? To solve this problem, it is useful to consider details of the so-called Two-Body Interaction or Two-Body Collision. This problem was made famous by astronomers when they worked out details concerning the orbital motion of the planets about the Sun. Two-Body Collision Calculation of the energy transferred during the scattering interaction Two-Body Collision Energy transfer calculation Ordinarily, in a first-year physics class, you would be asked to solve this problem using Conservation of Energy and Conservation of Momentum considerations. This problem is algebraically intractable using these rules of conservation. However, the problem is solved elegantly using a transformation of coordinates to the Center-of-Mass (CM) Frame-of-Reference. Proof that the net momentum in the Center-of-Mass (CM) coordinate system is zero - at all times. v v v m1 m2 RCM ! m1 +m2 r1 + m1 +m2 r2 v v v m1 If r2 = 0, then RCM = m1 +m2 r1 v v v* v v v* r1 = RCM + r1 r2 = RCM + r2 v v v v* v v v v* m1 m2 m1 m2 r1 = m1 +m2 r1 + m1 +m2 r2 + r1 r2 = m1 +m2 r1 + m1 +m2 r2 + r2 v* v v v* v m1 m2 ! m1 v m2 r1 = 1! m1 +m2 r1 ! m1 +m2 r2 r2 = m1 +m2 r1 + 1! m1 +m2 r2 v* v m1 m2 v v * ! m1 m2 v v m12 m2 2 m1 r1 = m1 ! m1 +m2 r1 ! m1 +m2 r2 m2 r2 = m1 +m2 r1 + m2 ! m1 +m2 r2 ( ( v m r = (m ! • 1 * 1 1 ) m12 m1 +m2 v•* v•* m1 r1 + m2 r2 = ( ) v )r! • 1 ( m1 m2 m1 +m2 v• r2 m1 (m1 +m2 )!m12 !m1m2 m1 +m2 v•* m2 r2 = ) ( v• r1 + ! m1 m2 m1 +m2 ) ( ) v v r + (m ! )r v )r =0 • 1 2 m2 (m1 +m2 )!m1m2 !m12 m1 +m2 m2 2 m1 +m2 • 2 • 2 Calculate the energy transfer from projectile m1 to target atom m2. Step 1. Transform from laboratory to CM coordinates. v RCM = m1 m1 +m2 v v• u = RCM = v r1 m1 m1 +m2 v• r1 = m1 m1 +m2 v v10 v ( v20 = 0 ) v Subtract the velocity of the CM ( u ) from vthe initial velocity of v projectile m1 ( v10 ) and target atom m2 ( v20 ). v * v v v10 = v10 ! u v * v v v v v20 = v20 ! u 1 = v10 ! m1m+m v 10 2 v = 0!u v m1 = 1! m1 +m2 v10 m1 +m2 !m1 v = m1 +m2 v10 ( ( v * v10 = ) ) m2 m1 +m2 v v10 v * v v20 = ! u Calculate the energy transfer from projectile m1 to target atom m2. Step 2. Perform the scattering interaction in CM coordinates. Properties of the Center-of-Mass (CM) : 1. The net linear momentum in CM coordinates is zero. 2. In the absence of external forces (an inertial frame-ofreference), the velocity of the center of mass is constant v (equal to u ). 3. In a two-body system, the center-of-mass must lie on the line adjoining the two particles at all times. 4. In a two-body system, the velocity vectors for the two particles in CM coordinates are parallel at all times. 5. In a two-body system, the magnitude of the velocity of each particle in CM coordinates is unchanged by the collision. Calculate the energy transfer from projectile m1 to target atom m2. Step 3. Transform from CM to laboratory coordinates. v Add the velocity of the CM ( u ) to the final CM velocity of v v projectile m1 ( v1 f *) and target atom m2 ( v2 f *). v v * v v1 f = v1 f + u v v * v v2 f = v2 f + u v Finally, solve for v2 f using trigonometry and convert to kinetic energy using: T2 f = 12 m2 v2 f 2 Trigonometry (Law of Cosines expression). v2 f 2 = v2 f * 2 + u 2 ! 2 v2 f * u cos" CM = u 2 + u 2 ! 2 u 2 cos" CM = 2 u 2 (1! cos" CM ) Then: 1 2 m2 v2 f 2 = 12 m2 2 u 2 (1! cos" CM ) # T2 f = m2 = = But: E10 = 1 2 m1 v10 2 ( ) 2 m1 m1 +m2 m1 m2 (m1 +m2 )2 m1 m2 1 (m +m )2 1 2 2 ! v10 2 (1! cos" CM ) m1 v10 (1! cos" CM ) 2 1 2 m1 v10 2 (1! cos" CM ) T2 f = ( m +m )2 E10 (1! cos" CM ) 1 2 2 m1 m2 Maximum Kinetic Energy Transfer Two-Body Collision 1 m2 T2 f = ( m2 m+m 2 E10 (1! cos " CM ) ) 1 2 Head-on Collision: ! CM = " cos ! = "1 # (1" cos$ CM ) = (1" "1) = 2 ! 4 m1 m2 T2max = 2 E10 f ( m1 +m2 ) max 2f T = ! E10 ! = ( m +m )2 1 2 ! " Kinetic Efficiency Factor 4 m1 m2 Kinetic Efficiency Factor, Λ Kinetic Efficiency Factor e- / e-, He, O, Cu, U Kinetic Efficiency Factor He / e-, He, O, Cu, U Kinetic Efficiency Factor O / e-, He, O, Cu, U Rutherford Backscattering Spectrometry (RBS) Example: 2 MeV He+ ions into Sc4Zr3O12 m1 = He m1 = 4.00 amu m1/m2 =0.25 Λ =0.64 m2 = O m2 = 15.9994 amu T2f = 1.28 MeV E1f = 0.72 MeV m1 = He m1 = 4.00 amu m1/m2 =0.089 Λ =0.30 m2 = Sc m2 = 44.956 amu T2f = 0.60 MeV E1f = 1.40 MeV m1 = He m1 = 4.00 amu m1/m2 =0.044 Λ =0.16 m2 = Zr m2 = 91.22 amu T2f = 0.32 MeV E1f = 1.68 MeV m1 = He m1 = 4.00 amu m1/m2 =0.022 Λ =0.086 m2 = Hf m2 = 178.49 amu T2f = 0.17 MeV E1f = 1.83 MeV Kinetic Efficiency Factor He / Sc4Zr3O12 E1Of = 0.72 MeV E1Scf = 1.40 MeV E1Zrf = 1.68 MeV Hf 1f E = 1.83 MeV
© Copyright 2025 Paperzz