MATH 12002 - CALCULUS I §2.3, §2.4, and §2.5: Computing Derivatives (Part 2) Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 12 Derivatives 10 f (x) = sin(x 2 + 2) Use the Chain Rule: f 0 (x) = [cos(x 2 + 2)] · d dx (x 2 + 2) = [cos(x 2 + 2)] · 2x = 2x cos(x 2 + 2). D.L. White (Kent State University) 2 / 12 Derivatives 11 f (x) = tan(2x − x 3 ) Use the Chain Rule: f 0 (x) = [sec2 (2x − x 3 )] · d dx (2x − x 3) = [sec2 (2x − x 3 )] · (2 − 3x 2 ) = (2 − 3x 2 ) sec2 (2x − x 3 ). D.L. White (Kent State University) 3 / 12 Derivatives 12 f (x) = x cos x Use the Product Rule: f 0 (x) = d d dx x cos x + x · dx cos x = 1 · cos x + x(− sin x) = cos x − x sin x. D.L. White (Kent State University) 4 / 12 Derivatives 13 f (x) = 4 sec7 (2 − 4x) First rewrite the function as f (x) = 4[sec(2 − 4x)]7 , and then use the Chain Rule twice: d f 0 (x) = 4 · 7[sec(2 − 4x)]6 · dx sec(2 − 4x) = 4 · 7[sec(2 − 4x)]6 · [sec(2 − 4x) tan(2 − 4x)] · d dx (2 − 4x) = 4 · 7[sec(2 − 4x)]6 · [sec(2 − 4x) tan(2 − 4x)] · (−4) = 28[sec6 (2 − 4x)] · [sec(2 − 4x) tan(2 − 4x)] · (−4). D.L. White (Kent State University) 5 / 12 Derivatives 14 f (x) = (tan x)(sec x) Use the Product Rule: f 0 (x) = d dx d tan x (sec x) + (tan x) dx sec x = (sec2 x)(sec x) + (tan x)(sec x tan x). D.L. White (Kent State University) 6 / 12 Derivatives 15 f (x) = cos2 x − sin2 x It may help to rewrite the function as f (x) = (cos x)2 − (sin x)2 . Use the Chain Rule on each term: d d cos x − 2(sin x)1 dx sin x f 0 (x) = 2(cos x)1 dx = 2(cos x)(− sin x) − 2(sin x)(cos x) = −4(sin x)(cos x). Note: f (x) = cos2 x − sin2 x = 1 − 2 sin2 x = 2 cos2 x − 1. Try computing the derivative using these other two forms of f (x). D.L. White (Kent State University) 7 / 12 Derivatives 16 f (x) = 1 + tan x 1 − tan x Use the Quotient Rule: d d (1 + tan x) (1 − tan x) − (1 + tan x) (1 − tan x) 0 dx dx f (x) = (1 − tan x)2 = (sec2 x)(1 − tan x) − (1 + tan x)(− sec2 x) . (1 − tan x)2 D.L. White (Kent State University) 8 / 12 Derivatives 17 f (x) = sec x x5 Use the Quotient Rule: d 0 f (x) = D.L. White (Kent State University) dx d 5 sec x · x 5 − (sec x) · dx x . 5 2 (x ) = (sec x tan x) · x 5 − (sec x) · 5x 4 (x 5 )2 = (sec x tan x) · x 5 − (sec x) · 5x 4 . x 10 9 / 12 Derivatives 18 f (x) = sin(x 3 + 2) cos(x 3 + 2) Use the Quotient Rule, with the Chain Rule for the numerator and denominator: h 0 f (x) = i h i d d 3 3 3 3 dx sin(x +2) cos(x +2)−[sin(x +2)] dx cos(x +2) [cos(x 3 +2)]2 = h i h i d d [cos(x 3 +2)]· dx (x 3 +2) cos(x 3 +2)−[sin(x 3 +2)][− sin(x 3 +2)]· dx (x 3 +2) [cos(x 3 +2)]2 = [cos(x 3 +2)]·3x 2 cos(x 3 +2)−[sin(x 3 +2)][− sin(x 3 +2)]·3x 2 . [cos(x 3 +2)]2 3 sin(x +2) 3 Note: f (x) = cos(x 3 +2) = tan(x + 2). Try computing the derivative using this other form of f (x). D.L. White (Kent State University) 10 / 12 Derivatives 19 f (x) = sin √ x+ √ sin x √ √ Observe that sin x = sin(x 1/2 ) and sin x = (sin x)1/2 . Then use the Chain Rule on each term: d√ 1 d √ f 0 (x) = (cos x) · dx x + 2 (sin x)−1/2 · dx sin x = (cos D.L. White (Kent State University) √ x) · 12 x −1/2 + 21 (sin x)−1/2 cos x. 11 / 12 Derivatives 20 f (x) = sin(tan x + sec x) Use the Chain Rule: f 0 (x) = [cos(tan x + sec x)] · d dx (tan x + sec x) = [cos(tan x + sec x)](sec2 x + sec x tan x). D.L. White (Kent State University) 12 / 12
© Copyright 2026 Paperzz