Algebra I Semester 2 Review Below is a list of every Khan Academy module that has been assigned this semester followed by each of the Chapter Tests we have taken. Khan Academy should be reviewed this week along with the material from each of the Chapter Tests. Answer keys for each test can be found immediately following the test items. The Semester Exam will be made up of questions from these tests with different values substituted. Chapter 6: Linear Inequalities Khan Academy Support: • Inequalities on a Number Line • One Step Inequalities • Linear Inequalities • Compound Inequalities • Absolute Value • Comparing Absolute Values • Absolute Value Equations • Graphing Inequalities • Graphing Inequalities 2 Chapter 7: Solving Systems of Equations and Inequalities Khan Academy Support: • Graphing Systems of Equations • Solutions to Systems of Equations • Systems of Equations with Substitution • Systems of Equations with Elimination 0.5 • Systems of Equations with Elimination • Systems of Equations • Systems of Equations Word Problems • Graphing Systems of Inequalities Chapter 8: Exponential Functions We did some EMaths stuff for this Chapter and Spring Break cut us off before a test in this Chapter, so it was dropped. Khan Academy Support: • Exponents 1 • Exponents 2 • Exponent Rules • Simplifying Expressions with Exponents • Exponents 3 • Exponents 4 Chapter 9: Polynomials Khan Academy Support: • Adding and Subtracting Polynomials • Multiplying Expressions 0.5 • Multiplying Expressions 1 • Multiplying Polynomials • Factoring Polynomials 1 • Factoring Polynomials 2 • Factoring Difference of Squares 1 • Factoring Difference of Squares 2 • Solving Quadratics by Factoring • Solving Quadratics by Factoring 2 • Factoring Polynomials with Two Variables • Factoring Difference of Squares 3 • Factoring Polynomials by Grouping Chapter 10: Quadratic Equations Khan Academy Support: • Solving Quadratics by Factoring • Solving Quadratics by Factoring 2 • Solving Quadratics by Taking the Square Root • Completing the Square 1 • Recognizing Conic Sections • Parabola Intuition 1 • Parabola Intuition 2 • Graphing Parabolas 0.5 • Simplifying Radicals (review) • Quadratic Equation • Vertex of a Parabola • Graphing Parabolas 1 • Graphing Parabolas 2 Name: _____________________ Class: ________________ Date: __________ID: A Chapter 6 Test Multiple Choice Identify the choice that best completes the statement or answers the question. What is the graph of the inequality in the coordinate plane? 1. (1 point) x≥2 a. c. b. d. What are the solutions of the inequality? 2. (1 point) −3 (−2x − 3 ) ≥ 6x + 5 f. x ≥ 4 g. x ≤ −8 h. all real numbers j. no solution 1 Name: ________________________ ID: A What is the graph of the inequality? 3. 4. (1 point) (1 point) x ≤ −6 f. d < –1 a. g. b. h. c. j. d. What inequality represents the graph? 5. (1 point) a. b. c. d. x<8 x > –8 x ≤ −8 x < –8 What are the solutions of the inequality? Graph the solutions. 6. (1 point) x − 3 ≤ −4 f. x≤7 g. x≤ h. x ≤ −1 j. x ≤ −7 −4 3 2 Name: ________________________ ID: A What are the solutions of the inequality? Graph the solutions. 7. 8. (1 point) x + 8 ≤ − 10 a. x≤ − x ≤ 18 c. x ≤ −2 d. −6x > −6 5 4 b. (1 point) f. x≤1 g. x>0 h. x≥0 j. x≥1 x ≤ − 18 Write and solve an inequality for each of the problems below. 9. 10. (1 point) Suppose you had d dollars in your bank account. You spent $17 but have at least $36 left. How much money did you have initially? Write and solve an inequality that represents this situation. a. d − 17 > 36 ; d > 53 b. d + 17 ≤ 36 ; d ≤ 70 c. d + 17 ≥ 36 ; d ≥ 70 d. d − 17 ≥ 36 ; d ≥ 53 (1 point) The width of a rectangle is 33 centimeters. The perimeter is at least 776 centimeters. Write and solve an inequality to find the possible lengths of the rectangle. f. g. h. j. 33 + ™ ≥ 776 ; ™ ≥ 743 2(33) + 2™ ≥ 776 ; ™ ≥ 355 2(33) + 2™ ≤ 776 ; ™ ≤ 355 33 + ™ ≤ 776 ; ™ ≤ 743 What are the solutions of the inequality? 11. 12. (1 point) 10 a. b. c. d. (1 point) 11m − 7 ≤ 23m + 17 5 f. m ≥ − 17 5 g. m ≥ 6 h. m ≥ –2 12 j. m ≥ 17 + 12w ≥ 7(w + 10) w ≥ 16 w ≥ − 12 w ≥ 14 w ≥ 12 3 Name: ________________________ ID: A What compound inequality represents the phrase? Graph the solutions. 13. (1 point) all real numbers g that are less than –7 or greater than 19 a. g < –7 or g ≥ 19 b. g < 19 or g > –7 c. –7 < g < 19 d. g < –7 or g > 19 What are the solutions of the compound inequality? Graph the solutions. 14. 15. (1 point) g. h. j. (1 point) 2x − 1 + 3 ≤ −4 3 –13 < 2x – 3 < 3 f. –5 < x < 3 or a. x ≤ − 10 or x ≥ 2 b. x ≤ − 2 or x ≥ 2 c. x ≤ − 4 or x ≥ d. x ≥ − 10 or x ≥ 2 −8 < x < 0 –18 < x < –2 –12 < x < 4 4 9 8 8x − 2 −1≥ 6 2 Name: ________________________ 16. ID: A (1 point) A student scored 83 and 88 on her first two quizzes. Write and solve a compound inequality to find the possible values for a third quiz score that would give her an average between 85 and 90, inclusive. f. g. h. j. 85 + 88 3 83 + 88 85 ≤ 3 83 + 88 90 ≤ 3 83 + 88 85 ≤ 2 83 ≤ + n + n + n ≤ 90; 76 ≤ n ≤ 97 ≤ 90; 84 ≤ n ≤ 99 ≤ 85; 99 ≤ n ≤ 84 + n ≤ 90; − 0.5 ≤ n ≤ 4.5 What are the solutions of the inequality? Graph the solution. 17. (1 point) |d − 4| ≥ 3 18. a. d ≤ 1 or d ≥ 7 b. d ≤ 1 or d ≥ 7 c. d≥7 d. d≤1 (1 point) The ideal width of a safety belt strap for a certain automobile is 4 cm. The actual width can vary by at most 0.3 cm. Write an absolute value inequality for the range of acceptable widths and solve the inequality. f. | w − 0.3 | ≤ 4 ; −3.7 ≤ w ≤ 4.3 g. | w − 4 | ≤ 0.3 ; 3.7 ≤ w ≤ 4.3 h. | w + 4 | ≤ 0.3 ; −4.3 ≤ w ≤ −3.7 j. | w + 0.3 | ≤ 4 ; −4.3 ≤ w ≤ 3.7 5 Name: ________________________ ID: A Graph the inequality. 19. (1 point) y < 3x − 2 a. c. b. d. 6 Name: ________________________ 20. ID: A (1 point) 6x + 2y ≥ 20 f. h. g. j. What are the solutions of the equation? 21. (1 point) |2x − 5| = 13 a. x = 4 b. x = −9 or x = 9 c. x = −4 or x = 9 d. No solution 7 Name: ________________________ ID: A Graph each equation. 22. (1 point) y =| x + 2 | f. h. g. j. 8 Name: ________________________ 23. ID: A (1 point) You have $50 to spend on music and movie downloads. Each album download costs $9 and each movie download costs $10. Write and graph a linear inequality that represents this situation. Let x represent the number of albums and y the number of movies. a. 9x + 10y ≥ 50 c. 10x + 9y ≥ 50 b. 10x + 9y ≤ 50 d. 9x + 10y ≤ 50 Which ordered pair is a solution of the inequality? 24. (1 point) y+3 < x f. (4, 14) g. (–1, –13) h. (–1, –4) j. (–2, 9) 9 Name: ________________________ ID: A Short Answer Graph the inequality. 25. (3 points) 4x − 3y > 12 Graph each equation. 26. (3 points) 1 y = | 2 x − 2| 10 ID: A Chapter 6 Test Answer Section MULTIPLE CHOICE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: C H A F D H D F D G D H D F A G B G C J C H D G PTS: PTS: PTS: PTS: PTS: PTS: PTS: PTS: PTS: PTS: PTS: PTS: PTS: PTS: PTS: PTS: PTS: PTS: PTS: PTS: PTS: PTS: PTS: PTS: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 STA: A1.2.1| A1.2.3 STA: STA: STA: STA: STA: STA: STA: A1.2.1| A1.2.1| A1.2.3 A1.2.1| A1.2.1| A1.2.1| A1.2.1| A1.2.3 A1.2.3 A1.2.3 A1.2.3 A1.2.3 A1.2.3 STA: L1.2.2| A1.2.4 STA: L1.2.2| A1.2.4 STA: L1.2.2| A1.2.4 STA: A2.1.2| A2.2.2| A2.3.3 1 ID: A SHORT ANSWER 25. ANS: PTS: 3 26. ANS: PTS: 3 STA: A2.1.2| A2.2.2| A2.3.3 2 Name: _____________________ Class: ________________ Date: __________ID: A Chapter 7 Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. 2. (1 point) A company ships two different products, one in smaller packages that weighs 12 pounds and the other in a 20-pound package. A shipment of nine packages weighs a total of 124 pounds. What is the total weight of the smaller packages? a. b. c. d. e. 48 60 84 72 37 (1 point) Sally has 42 coins, all dimes and nickels, that have a total value of $3.00. How many nickels does she have? f. g. h. j. k. lb lb lb lb lb 18 22 20 26 24 What is the solution of the system? Use substitution. 3. 4. (1 point) a. b. c. d. (1 point) 1 3y = – x + 2 2 y = –x + 9 y = 5x + 10 y = 4x (10, 40) (–10, –40) (40, 10) (1.1, 4.4) f. g. h. j. 1 (10, –1) (3, 6) (–1, 8) (20, –4) Name: ________________________ ID: A What is the solution of the system? Use a graph. 5. (1 point) y = 3x + 3 y=x–1 a. c. b. d. 2 Name: ________________________ 6. ID: A (1 point) 2x + 5y = −4 4x + 2y = 8 f. h. g. j. What is the solution of the system? Use elimination. 7. 8. (1 point) (1 point) 2x – 2y = –8 x + 2y = –1 5x + 8y = –29 7x – 2y = –67 a. b. c. d. f. (1, 5) (–3, 1) (–14, 1) (0, 4) 3 g. (–7, 9) ÊÁ ˆ ÁÁ −10, 21 ˜˜˜ ÁÁ ˜ 8 ˜˜¯ ÁË h. j. (–1, –3) (–9, 2) Name: ________________________ 9. ID: A (1 point) 6x – 6y = 42 10x – 4y = 52 a. b. c. d. (4, –3) (–3, 4) (10, 6) (7, 0) Solve each problem below using the method you determine to be appropriate. 10. 12. (2 points) Tom has a collection of 21 CDs and Nita has a collection of 14 CDs. Tom is adding 3 CDs a month to his collection while Nita is adding 4 CDs a month to her collection. Find the number of months after which they will have the same number of CDs. f. g. h. j. 11. The length of a rectangle is 3 centimeters more than 3 times the width. If the perimeter of the rectangle is 46 centimeters, find the dimensions of the rectangle. f. g. h. j. 1 month 7 months 2 months 42 months 13. length length length length = = = = 5 cm; width = 18 13 cm; width = 5 18 cm; width = 5 13 cm; width = 8 cm cm cm cm (2 points) A corner store sells two kinds of baked goods: cakes and pies. A cake costs $10 and a pie costs $14. In one day, the store sold 8 baked goods for a total of $92. How many cakes did they sell? (2 points) Kendra owns a restaurant. She charges $3.00 for 2 eggs and one piece of toast, and $1.80 for one egg and one piece of toast. How much does Kendra charge for an egg? A piece of toast? a. b. c. d. (2 points) a. b. c. d. $1.20 per egg; $.60 for toast $.60 per egg; $.60 for toast $.60 per egg; $1.20 for toast $1.20 per egg; $1.20 for toast 4 5 2 3 8 cakes cakes cakes cakes Name: ________________________ 14. ID: A (2 points) The school cafeteria sells two kinds of wraps: vegetarian and chicken. The vegetarian wrap costs $1.00 and the chicken wrap costs $1.10. Today they made $104.80 from the 100 wraps sold. How many of the wraps sold were vegetarian? f. g. h. j. 43 36 52 48 wraps wraps wraps wraps Short Answer 15. (4 points) A chemist has HCl in 5% and 15% solutions in the stock room. He needs 200 mL of a 7% HCl solution for a lab experiment? How much of each solution will he need to mix to obtain 200 mL of a 7% acid solution? (a) Write a system of equations to represent this problem. (b) How much of each solution is required? 16. (4 points) Sharon has some one-dollar bills and some five-dollar bills. She has 14 bills. The value of the bills is $30. Write and solve a system of equations using elimination to find how many of each kind of bill she has. 5 ID: A Chapter 7 Test Answer Section MULTIPLE CHOICE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: C K B F A G B J A G A H A H STA: STA: STA: STA: STA: STA: STA: STA: STA: STA: STA: STA: STA: STA: A1.2.3 A1.2.3 A1.2.3 A1.2.3 A1.2.3 A1.2.3 A1.2.3 A1.2.3 A1.2.3 A1.2.3 A1.2.3 A1.2.3 A1.2.3 A1.2.3 SHORT ANSWER 15. ANS: (a) x + y = 200 0.05x + 0.15y = 14 (b) 40 mL of the 15% and 160 mL of the 5% STA: A1.2.3 16. ANS: 4 five-dollar bills, 10 one-dollar bills STA: A1.2.3 1 Name: ________________________ Class: ___________ Date: _________ ID: A Quiz 3/22 Multiple Choice Identify the choice that best completes the statement or answers the question. What is the simplified form of each expression? 1) (1 point) 4 (8g ) a. 3 8g 12 7 b. 512g b. 625t 12 16c b. 64 c. 8g d. 512g c. 20t 12 8c d. 625t 2c 9c 8 k c. −6k 10 2c d. 9k 3c b. 12 c. 1 64 d. –64 b. 5 16 c. 15 d. 125 b. –1.4 c. 1 d. –1 12 2) (1 point) ÊÁ 4 ˆ˜ 4 ÁÁ 5t ˜˜ ÁÁ ˜ ÁÁ 3 ˜˜˜ ÁË 2c ˜¯ a. 10t 16 c 12 16 16 16 3) (1 point) ÊÁ 4 ˆ˜ −2 ÁÁ k ˜˜ ÁÁ ˜˜ ÁÁÁ 3c 5 ˜˜˜ Ë ¯ a. 8 3k c 10 10 8 8 4) (1 point) (−4) a. −3 − 1 64 5) (1 point) 8 5 ⋅5 a. 5 2 10 10 6) (1 point) (−1.4 ) a. 0 0 1 10 Name: ________________________ ID: A 7) (1 point) 3 j ⋅ 5j a. 4 5j 7 b. 5j b. t 12 c. 6j c. t 7 d. 6j d. 1 9 t 12 8) (1 point) 15 t 6 t a. t 21 9) (1 point) ÊÁ 7 8 ˆ˜ 0 3 −2 ÁÁ x y ˜˜ x y Ë ¯ −1 x y a. x 2 4 90 9 =? b. x 4 y 4 c. x 6 d. 3 x y x e. 5 y 10) (1 point) y −8 y 10 a. y 2 18 b. y b. 7g b. 9x y c. 1 18 y d. 1 2 y c. − 7 g d. g c. 9x y d. 3x y 11) (1 point) 1 −7 g a. −g 7 7 12) (1 point) 3 2 (3xy ) (xy) a. 3 2x y 12 6 8 9 8 2 12 8 12 ID: A Quiz 3/22 Answer Section MULTIPLE CHOICE 1) ANS: 2) ANS: 3) ANS: 4) ANS: 5) ANS: 6) ANS: 7) ANS: 8) ANS: 9) ANS: 10) ANS: 11) ANS: 12) ANS: D B B A A C A C B C D C STA: STA: STA: STA: STA: STA: STA: STA: L1.1.4| L1.1.4| L1.1.4| L1.1.4| L1.1.4| L1.1.4| L1.1.4| L1.1.4| L2.1.2| L2.1.2| L2.1.2| L2.1.2| L2.1.2| L2.1.2| L2.1.2| L2.1.2| A1.1.2 A1.1.2 A1.1.2 A1.1.2 A1.1.2 A1.1.2 A1.1.2 A1.1.2 STA: L1.1.4| L2.1.2| A1.1.2 STA: L1.1.4| L2.1.2| A1.1.2 STA: L1.1.4| L2.1.2| A1.1.2 1 Name: ________________________ Class: _____________ Date: __________ID: B Quiz 3/30 Multiple Choice Identify the choice that best completes the statement or answers the question. What is each number written in standard notation? ____ 1. (1 point) −3 1.13 × 10 a. 0.0113 b. 0.000113 c. 0.00113 d. –33.9 What is each number written in scientific notation? ____ 2. (1 point) 856,000,000 a. 0.856 × 10 9 b. c. 85.6 × 100 8.56 × 10 8 8.56 × 10 7 d. ____ 3. (1 point) 0.000407 −5 b. c. 40.7 × 100 −3 0.407 × 10 4.07 × 10 d. 4.07 × 10 a. −4 Is the number written in scientific notation? If not, explain. ____ 4. (1 point) −6 6.8 × 1000 a. No; it is not written as a number times a power of 10. b. No; the first factor is not a number between 1 and 10. c. Yes; the number is written in scientific notation. ____ 5. (1 point) −1 0 5.8 × 10 a. No; it is not written as a number times a power of 10. b. No; the first factor is not a number between 1 and 10. c. Yes; the number is written in scientific notation. 1 Name: ________________________ ID: B Find the simplified form of the expression. Give your answer in scientific notation. ____ 6. (1 point) ÊÁ 6ˆ 3ˆ ˜ ÊÁ ˜ ÁÁ 3 × 10 ˜˜ ÁÁ 8 × 10 ˜˜ Ë ¯Ë ¯ c. d. 1.1 × 10 b. ____ 19 1.1 × 10 19 2.4 × 10 10 2.4 × 10 a. 10 7. (1 point) Astronomers measure large distances in light-years. One light-year is the distance that light can travel in one year, or approximately 5.88 × 10 12 miles. Suppose a star is 1 3.4 × 10 light-years from Earth. In scientific notation, approximately how many miles is it? 14 a. 2.0 × 10 miles 12 b. 3.4 × 10 miles c. d. ____ 13 5.88 × 10 miles 12 5.88 × 10 miles 8. (1 point) Suppose a population of 80 crickets doubles in size every month. The function x f(x) = 80 ⋅ 2 gives the population after x months. How many crickets will there be after 2 years? a. 320 crickets b. 320 crickets c. 1,342,177,280 crickets d. 3,840 crickets 2 ID: B Quiz 3/30 Answer Section MULTIPLE CHOICE 1. 2. 3. 4. 5. 6. 7. 8. ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: C D D A C C A C STA: STA: STA: STA: STA: STA: STA: STA: L1.1.4| L2.1.2| A1.1.2 L1.1.4| L2.1.2| A1.1.2 L1.1.4| L2.1.2| A1.1.2 L1.1.4| L2.1.2| A1.1.2 L1.1.4| L2.1.2| A1.1.2 L1.1.4| L2.1.2| A1.1.2 L1.1.4| L2.1.2| A1.1.2 A3.4.1| A2.1.7| A2.3.1| A2.3.3| A3.2.1 1 Name: ________________________ Class: _____________ Date: __________ID: A Chapter 9 Test Multiple Choice Identify the choice that best completes the statement or answers the question. Simplify the sum. 1. (1 point) (8u3 + 2u2 + 7) + (3u3 – 7u + 8) a. b. c. d. 5u3 – 7u2 + 2u – 15 5u3 + 2u2 – 7u + 15 15 – 7u + 2u2 + 11 u3 11u3 + 2u2 – 7u + 15 Simplify the difference. 2. 3. (1 point) (–7x – f. g. h. j. 5x4 + 5) – (–7x4 (1 point) (2w2 – 4w – 8) – (5w2 + 3w – 2) – 5 – 9x) 2x4 + 2x + 8 –14x4 + 10x + 10 –14x4 – 10x + 10 2x4 + 2x + 10 a. b. c. d. –3w2 – w – 10 7w2 + 7w + 6 7w2 – w – 10 –3w2 – 7w – 6 Simplify the product using the Distributive Property. 4. 5. (1 point) 2n(n2 + 3n + 4) f. g. h. j. (1 point) (2n2 + 5n + 4)(2n – 4) 2n3 + 3n + 4 2n3 + 6n2 + 8n 2n3 + 6n + 8 n2 + 5n + 4 a. b. c. d. 1 4n3 4n3 4n3 4n3 – 2n2 + 28n – 16 + 18n2 – 28n – 16 + 2n2 – 12n – 16 + 12n2 – 2n – 16 Name: ________________________ ID: A Simplify the product using FOIL. 6. 8. (1 point) (5h − 3)(3h + 7) (3x – 7)(3x – 5) f. g. h. j. 7. 9x2 9x2 9x2 9x2 (1 point) – 36x + 35 – 36x – 35 + 6x + 35 + 36x + 35 2 h. 15h + 26h − 21 2 15h − 44h + 21 2 15h + 44h + 21 j. 15h − 26h − 21 f. g. 2 (1 point) (4x − 4)(3x − 4) a. b. c. d. 2 12x + 4x − 16 2 12x + 28x + 16 2 12x − 28x + 16 2 12x − 4x − 16 What is the factored form of the following expressions? 9. d2 a. b. c. d. 10. 12. (1 point) + 12d + 32 (d (d (d (d 2 d − 16d + 64 – 8)(d – 4) + 8)(d – 4) + 8)(d + 4) – 8)(d + 4) (1 point) d2 – 14d + 40 f. g. h. j. 11. (d (d (d (d 13. (d − 8) (d − 64)(d − 1) h. j. (d + 8) (d − 8)(d + 8) 2 (1 point) 2 d2 + 4d – 21 (d (d (d (d 2 f. g. d − 26d + 169 + 4)(d – 10) – 4)(d + 10) + 4)(d + 10) – 4)(d – 10) (1 point) a. b. c. d. (1 point) – 3)(d – 7) + 3)(d + 7) – 3)(d + 7) + 3)(d – 7) 2 2 a. b. (d + 13) (d − 13)(d + 13) c. d. (d − 13) (d − 169)(d − 1) 2 Name: ________________________ 14. 15. 17. (1 point) (1 point) 6x2 + 13x + 6 x2 – 10xy + 24y2 f. g. h. j. (2x (2x (2x (2x a. b. c. d. – 3)(3x – 2) – 3)(3x + 2) + 3)(3x + 2) + 3)(3x – 2) 18. (1 point) 12g2 a. b. c. d. 16. ID: A – 2)(4g – 3) + 2)(4g + 3) – 2)(4g + 3) + 2)(4g – 3) x2 + 3xy – 4y2 (x (x (x (x (1 point) f. g. h. j. (1 point) f. g. h. j. – 6y)(x – 4y) + 2y)(x – 12y) + 6y)(x + 4y) – 2y)(x + 12y) The area of a rectangular barnyard is given by the trinomial 2x2 + 10x – 72. What are the possible dimensions of the barnyard? Use factoring. +g–6 (3g (3g (3g (3g (x (x (x (x x – and 2x – 8 x + 9 and 2x – 8 – x + 9 and –2x + 8 x – 9 and 2x + 8 – 4y)(x – y) – 4y)(x + y) + 4y)(x + y) + 4y)(x – y) What is a simpler form of each product? 19. 20. (1 point) (2x – a. b. c. d. 6)2 4x2 4x2 4x2 4x2 (1 point) The area of a rectangular garden is given by the trinomial x2 + 2x – 63. What are the possible dimensions of the rectangle? Use factoring. – 8x + 36 + 36 – 24x + 36 – 12x + 36 f. g. h. j. 3 x x x x + 7 and x – 9 – 7 and x – 9 + 7 and x + 9 – 7 and x + 9 Name: ________________________ 21. ID: A (1 point) A square painting is surrounded by a frame. The outside edges of the frame are x inches in length and there is a 3-inch border between the painting and the frame. What is the total area of the border? a. b. c. d. –6x + 9 –12x – 36 12x – 36 x2 + 12x + 36 What is the factored form of the expression? 22. 23. 24. (1 point) (1 point) 9b2 – 100 32x − 50 f. g. h. j. (3b + 10)(3b – 10) (3b + 10)(3b + 10) (3b – 10)(3b – 10) (10b + 3)(10b – 3) f. 2 (4x + 5) (4x − 5) g. 2 (4x + 5 ) h. j. 2 (4x − 5 ) 2 (5x + 4) (5x − 4) 2 (1 point) s2 – 49 a. b. c. d. (s (s (s (s – 7)(s + 9) – 7)(s + 7) + 7)(s + 7) – 7)(s – 7) 4 2 2 Name: ________________________ ID: A What are the solutions of the equation? 25. (1 point) (x − 9)(x + 7) = 0 a. b. c. d. 26. –9, −7 –1,1 9, 7 9,−7 (1 point) 2 z − 6z − 27 = 0 f. g. h. j. 27. 3, –9 –3, –9 –3, 9 3, 9 (1 point) 2 3z + 3z − 6 = 0 a. b. c. d. 1, 2 3, –2 1 , –2 3, 2 5 ID: A Chapter 9 Test Answer Section MULTIPLE CHOICE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: D J D G C F C F C J C F C H C J A G C J C F B F D H C STA: A1.1.3 STA: STA: STA: STA: STA: STA: STA: STA: STA: STA: A1.1.3 A1.1.3 A1.1.3 A1.1.3 A1.1.3 A1.1.3 A1.1.3 A1.1.3 A1.1.3 A1.1.3 STA: A1.1.3 STA: STA: STA: STA: STA: STA: A1.1.3 A1.1.3 A1.1.3 A3.3.5 A3.3.5 A3.3.5 1 Name: ________________________ Class: _____________ Date: __________ID: A Chapter 10 Test Matching Match each graph with the the name of the correct conic section. a. Parabola c. Ellipse b. Circle d. Hyperbola 1. (1 point) 3. (1 point) 2. (1 point) 4. (1 point) 1 Name: ________________________ ID: A Multiple Choice Identify the choice that best completes the statement or answers the question. Order the group of quadratic functions from widest to narrowest graph. 5. (1 point) 2 2 y = 5x , y = x , y = 2x 2 2 2 2 2 2 2 a. y = x , y = 2x , y = 5x b. y = x , y = 5x , y = 2x c. y = 5x , y = 2x , y = x d. y = 2x , y = x , y = 5x 2 2 2 2 2 2 What are the coordinates of the vertex of the graph? Is it a maximum or minimum? 6. (1 point) a. b. (1, 2); maximum (2, 1); maximum c. d. (2, 1); minimum (1, 2); minimum 2 Name: ________________________ 7. (1 point) a. b. 8. ID: A (–3, 2); maximum (2, –3); maximum c. d. (–3, 2); minimum (2, –3); minimum (1 point) How is the graph of y = 3x2 + 3 different from the graph of y = 3x2? a. It is shifted 3 unit(s) up. c. It is shifted 3 unit(s) left. b. It is shifted 3 unit(s) down. d. It is shifted 3 unit(s) right. 3 Name: ________________________ ID: A Graph the function. Identify the vertex and axis of symmetry. 9. (1 point) 2 f(x) = x + 4x + 1 a. c. axis of symmetry: x = 2 vertex: (2, –3) b. axis of symmetry: x = −2 vertex: (–2, –3) d. axis of symmetry: x = −2 vertex: (–2, 3) axis of symmetry: x = 2 vertex: (2, 3) 4 Name: ________________________ 10. ID: A (1 point) 2 What are the solutions of the equation x − 9 = 0 ? Use a graph of the related function. a. c. There are two solutions: –3 and 3. b. There are two solutions: –3 and 3. d. There are two solutions: ± 3. There are no real number solutions. 5 Name: ________________________ ID: A Solve the equation using square roots. 11. 12. (1 point) 2 (1 point) 2 x − 81 = 0 a. − 9 , 9 b. –81, 81 c. –9, 9 d. no real number solutions 3x − 147 = 0 a. –49, 49 b. − 7 , 7 c. –7, 7 d. no real number solutions Solve the equation using the Zero-Product Property. 13. (1 point) (x − 9)(x + 7) = 0 a. 9, 7 b. –9, −7 c. d. –1,1 9,−7 What are the solutions of the equation? 14. 16. (1 point) 2 2 z − 6z − 27 = 0 a. 3, 9 b. 3, –9 c. –3, 9 d. –3, –9 15. x + 3x = 18 a. 3, –6 b. –3, 6 c. 4.42, –4.42 d. 18.75, –21.75 17. (1 point) 3z a. b. c. d. 2 (1 point) (1 point) What is the value of c such that + 3z − 6 = 0 1 , –2 1, 2 3, –2 3, 2 2 x − 8x + c is a perfect-square trinomial? a. 32 b. −4 c. 16 d. 64 6 Name: ________________________ 18. ID: A (1 point) What is the value of c such that 2 x + 20x + c is a perfect-square trinomial? a. 10 b. 400 c. 100 d. 200 Solve the equation by completing the square. Round to the nearest hundredth if necessary. 19. 20. (1 point) 2 (1 point) 2 x − 6x = −8 a. 2, 4 b. –2, –4 c. –2, 4 d. 2, –4 x + 8x + 15 = 0 a. –5, –3 b. 5, 3 c. 5, –3 d. –5, 3 Use the quadratic formula to solve the equation. If necessary, round to the nearest hundredth. 21. 22. (1 point) 2 (1 point) 2 x + 3 = −4x a. 1, 3 b. –1, –3 c. 1, –3 d. 1, –3 x − 8 = 2x a. 2, 4 b. 2, 4 c. –2, 4 d. 2, –4 7 Name: ________________________ 23. ID: A 25. (1 point) What is the equation of the parabola that Solve the equation. Check your solution. 2 2 moves the parent graph y = x to the right 1 unit? x + 17x + 72 = 0 a. –8, –9 b. –5, –6 c. –6, –7 d. –4, –5 2 a. y = x −1 b. y = (x + 1) 2 c. y = (x − 1) 2 d. y = x +1 (1 point) 2 26. (1 point) 2 24. Solve x − 2x − 8 = 0 by completing the square. a. 0, 6 b. 1, 5 c. –1, 7 d. –2, 4 (1 point) What is the equation of the parabola that 2 moves the parent graph y = x to the left 9 units? 2 a. y = x +9 b. y = (x + 9) 2 c. y = (x − 9) 2 d. y = x −9 27. 2 (1 point) Use the Quadratic Formula to solve the 2 equation. 4x + 5x − 6 = 0 4 a. − , 2 3 4 b. − , –2 3 c. 2, –2 3 d. –2, 4 8 Name: ________________________ ID: A Short Answer Complete problems 28 and 29 on the lines provided on your bubble sheet. Use the first column of lines for number 28 and the second column of lines for number 29. Remember to show any required work for your solution on the lines on your bubble sheet. 28. (4 points) For the quadratic function below, describe how the graph changes from the parent graph of 2 y = x . Then name the vertex of the graph. 2 y = ( x − 2) + 5 29. (4 points) Use the Quadratic Formula to solve the equation. Show all of your work, and write your answer in simplest radical form. 2 2x − 7x − 6 = 0 9 ID: A Chapter 10 Test Answer Section MATCHING 1. 2. 3. 4. ANS: ANS: ANS: ANS: B D A C MULTIPLE CHOICE 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: A A D A C C C C D C A A C C A A B C C B A D D STA: STA: STA: STA: STA: STA: STA: STA: STA: STA: STA: STA: STA: STA: STA: STA: A3.3.1| A3.3.1| A3.3.1| A3.3.1| A3.5.1| A3.3.4 A3.3.4 A3.3.4 A3.3.5 A3.3.5 A3.3.5 A3.3.5 A3.3.3 A3.3.3 A3.3.3 A3.3.3 STA: STA: STA: STA: STA: MI MI MI MI MI A3.3.2 A3.3.2 A3.3.2 A3.3.2 A2.1.7| A2.3.1| A2.3.3| A3.3.1 II.2.3 | MI II.2.1 II.2.3 | MI II.2.1 V.2.3 | MI V.2 V.2.3 | MI V.2 V.2.3 | MI V.2 1 ID: A SHORT ANSWER 28. ANS: shifts right 2 units, up 5 units; ÁÊË 2, 5 ˜ˆ¯ 2 Given a quadratic equation written in the form y = ( x + b) + c, if c is greater than 0 the parent graph shifts upward and if c is less than 0 the parent graph shifts downward. A positive b value shifts the parent graph to the left and a negative b value shifts the graph to the right. The x-coordinate of the vertex is the value that will result in zero inside the parentheses. The y-coordinate of the vertex is c. STA: MI II.2.3 | MI II.2.1 29. ANS: 7± 97 4 2 Solve the equation ax + bx + c = 0 using the Quadratic Formula, x = STA: MI V.2.3 | MI V.2 2 −b ± 2 b − 4ac , a ≠ 0. 2a
© Copyright 2026 Paperzz