36033_15_appD_pD1-D6.qxd 4/6/11 7:43 AM Page D1 D Properties of Plane Areas Notation: A area 苶x, 苶y distances to centroid C Ix, Iy moments of inertia with respect to the x and y axes, respectively Ixy product of inertia with respect to the x and y axes IP Ix Iy polar moment of inertia with respect to the origin of the x and y axes IBB moment of inertia with respect to axis B-B y 1 Rectangle (Origin of axes at centroid) A bh x h C x y bh3 Ix 12 b 苶x 2 h y苶 2 hb3 Iy 12 Ixy 0 bh IP (h2 b2) 12 b y 2 Rectangle (Origin of axes at corner) B bh3 Ix 3 h O B x y bh IP (h2 + b2) 3 Triangle (Origin of axes at centroid) c bh A 2 x h C y b b2h2 Ixy 4 b3h3 IBB 6(b2 h2) b 3 hb3 Iy 3 x bh3 Ix 36 bc x苶 3 h y苶 3 bh Iy (b2 bc c2) 36 bh2 Ixy (b 2c) 72 bh IP (h2 b2 bc c2) 36 D1 © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 36033_15_appD_pD1-D6.qxd D2 4/6/11 7:43 AM Page D2 APPENDIX D Properties of Plane Areas y 4 Triangle (Origin of axes at vertex) c B B h O x b y 5 bh3 Ix 12 bh Iy (3b2 3bc c2) 12 bh2 Ixy (3b 2c) 24 bh3 IBB 4 Isosceles triangle (Origin of axes at centroid) bh A 2 x h C y B x B b bh3 Ix 36 b x苶 2 h y苶 3 hb3 Iy 48 Ixy 0 bh3 IBB 12 bh IP (4h2 3b2) 144 (Note: For an equilateral triangle, h 兹3苶 b/2.) y 6 Right triangle (Origin of axes at centroid) bh A 2 x h C y B x B bh3 Ix 36 b b 苶x 3 hb3 Iy 36 y Right triangle (Origin of axes at vertex) B B bh3 Ix 12 h O hb3 Iy 12 bh IP (h2 b2) 12 x b2h2 Ixy 24 bh3 IBB 4 b y 8 Trapezoid (Origin of axes at centroid) a h b2h2 Ixy 72 bh3 IBB 12 bh IP (h2 b2) 36 7 h 苶y 3 C B h(a b) A 2 y x h(2a b) 苶y 3(a b) h3(a2 4ab b2) I B x 36(a b) h3(3a b) IBB 12 b © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 36033_15_appD_pD1-D6.qxd 4/6/11 7:43 AM Page D3 APPENDIX D Properties of Plane Areas y 9 Circle d = 2r r x B Ixy 0 B 10 r pr 4 pd 4 Ix Iy 4 64 pr4 pd4 IP 2 32 5p r 4 5p d 4 IBB 4 64 y Semicircle (Origin of axes at centroid) C pr2 A 2 y B x B y 11 (Origin of axes at center) pd2 A pr 2 4 C D3 4r y苶 3p (9p 2 64)r 4 Ix ⬇ 0.1098r4 72p p r4 Iy 8 Ixy 0 pr4 IBB 8 Quarter circle (Origin of axes at center of circle) pr2 A 4 x B B C y x O 4r x苶 苶y 3p pr4 Ix Iy 16 (9p 2 64)r 4 IBB ⬇ 0.05488r4 144p r4 Ixy 8 r y 12 Quarter-circular spandrel (Origin of axes at point of tangency) B B r 冢 冢 x O y 13 a angle in radians A ar 2 C a a r y x O y a 冢 冣 1 p Iy IBB r 4 ⬇ 0.1370r4 3 16 (a p/2) 2r sin a 苶y 3a 苶x r sin a r4 Ix (a sin a cos a) 4 r4 Iy (a sin a cos a) 4 y Circular segment (Origin of axes at center of circle) C a angle in radians a A r 2(a sin a cos a) r O 冣 Circular sector (Origin of axes at center of circle) x x 14 (10 3p)r ⬇ 0.2234r 苶y 3(4 p) 2r ⬇ 0.7766r 苶x 3(4 p) 5p Ix 1 r 4 ⬇ 0.01825r 4 16 y C 冣 p A 1 r 2 4 x x Ixy 0 ar 4 IP 2 (a p/2) 冢 冣 2r sin3 a 苶y 3 a sin a cos a r4 Ix (a sin a cos a 2 sin3 a cos a) 4 Ixy 0 r4 Iy (3a 3 sin a cos a 2 sin3 a cos a) 12 © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 36033_15_appD_pD1-D6.qxd D4 4/6/11 7:43 AM Page D4 APPENDIX D Properties of Plane Areas 15 y a Circle with core removed (Origin of axes at center of circle) a angle in radians r C a a arccos r b a x a b (a p/2) 冢 ab A 2r 2 a r2 b 兹苶 r 2 a苶2 冢 冣 冣 冢 r4 3ab 2ab3 Ix 3a 2 6 r r4 冣 r4 ab 2ab3 Iy a 2 2 r r4 Ixy 0 2a y 16 Ellipse (Origin of axes at centroid) A pab b C x b a p ba3 Iy 4 pab IP (b2 a2) 4 Ixy 0 a pa b 3 I x 4 Circumference ⬇ p [1.5(a b) 兹a苶b苶 ] ⬇ 4.17b /a 4a 2 17 y 冢 2 bh A 3 y O x b x Vertex h C O y bh 3b x苶 4 bh3 Ix 21 y b2h2 Ixy 12 3h 苶y 1 0 hb3 Iy 5 冢 xn y f (x) h 1 bn x C y x b b2h2 Ixy 12 Semisegment of nth degree (Origin of axes at corner) y = f (x) O 2hb3 Iy 15 hx2 y f (x) b2 x A 3 b h 2h y苶 5 Parabolic spandrel (Origin of axes at vertex) y = f (x) 19 3b x苶 8 16bh3 Ix 105 y 18 冣 x2 y f (x) h 1 b2 x C (0 b a/3) Parabolic semisegment (Origin of axes at corner) Vertex y = f (x) h (a/3 b a) 冢 n A bh n1 冣 冣 (n 0) b(n 1) 苶x 2(n 2) 2bh3n3 (n 1)(2n 1)(3n 1) Ix hn y苶 2n 1 hb3n Iy 3(n 3) b2h2n2 Ixy 4(n 1)(n 2) © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 36033_15_appD_pD1-D6.qxd 4/6/11 7:43 AM Page D5 APPENDIX D Properties of Plane Areas y 20 Spandrel of nth degree (Origin of axes at point of tangency) hx n y f (x) bn y = f (x) x h C y O bh3 Ix 3(3n 1) y 21 h C b x B b 4bh A p hb3 Iy n3 冢 冣 冣 8bh3 IBB 9p p d 3t Ix Iy pr 3t 8 A 2prt pdt x C 冢 4 32 Iy hb3 ⬇ 0.2412hb3 p p3 Thin circular ring (Origin of axes at center) Approximate formulas for case when t is small d = 2r r Ixy 0 t y t pd 3t IP 2pr 3t 4 Thin circular arc (Origin of axes at center of circle) Approximate formulas for case when t is small B B C b y b r x O b angle in radians A 2brt (Note: For a semicircular arc, b p/2.) r sin b 苶y b Ix r 3t(b sin b cos b) Ixy 0 y 24 Iy r 3t(b sin b cos b) 2b sin2b 1 cos2b IBB r 3t 2 b 冢 冣 Thin rectangle (Origin of axes at centroid) Approximate formulas for case when t is small A bt b b C x t B b2h2 Ixy 4(n 1) ph y苶 8 8 p Ix bh3 ⬇ 0.08659bh3 9p 16 Ixy 0 y h(n 1) y苶 2(2n 1) Sine wave (Origin of axes at centroid) y B 22 (n 0) b(n 1) x苶 n2 bh A n1 x b 23 D5 tb3 Ix sin2 b 12 tb3 Iy cos2 b 12 tb3 IBB sin2 b 3 B © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 36033_15_appD_pD1-D6.qxd D6 4/6/11 7:43 AM Page D6 APPENDIX D Properties of Plane Areas 25 A b R1 R2 C a Regular polygon with n sides (Origin of axes at centroid) B b C centroid (at center of polygon) n number of sides (n 3) b length of a side b central angle for a side 360° b n a interior angle (or vertex angle) n2 a 180° n 冢 冣 a b 180° R1 radius of circumscribed circle (line CA) b b R1 csc 2 2 b b R2 cot 2 2 R2 radius of inscribed circle (line CB) 2 b nb A cot 4 2 Ic moment of inertia about any axis through C (the centroid C is a principal point and every axis through C is a principal axis) 冢 冣冢 冣 nb4 b b Ic cot 3cot2 1 192 2 2 IP 2Ic © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
© Copyright 2026 Paperzz