C H A P T E R 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals Section 7.1 Basic Integration Rules . . . . . . . . . . . . . . . . . . . 308 Section 7.2 Integration by Parts . . . . . . . . . . . . . . . . . . . . . 312 Section 7.3 Trigonometric Integrals . . . . . . . . . . . . . . . . . . . 321 Section 7.4 Trigonometric Substitution . . . . . . . . . . . . . . . . . 328 Section 7.5 Partial Fractions Section 7.6 Integration by Tables and Other Integration Techniques . . 343 Section 7.7 Indeterminate Forms and L’Hôpital’s Rule Section 7.8 Improper Integrals Review Exercises . . . . . . . . . . . . . . . . . . . . . . 336 . . . . . . . . 348 . . . . . . . . . . . . . . . . . . . . . 353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 C H A P T E R 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals Section 7.1 Basic Integration Rules Solutions to Even-Numbered Exercises 2. (a) d x 2 lnx2 1 C 21 x2 2x dx 1 x 1 (b) d 2x x2 122 2x2x2 12x_ 21 3x2 C 2 dx x2 12 x2 14 x 13 (c) 1 d arctan x C dx 1 x2 (d) 2x d lnx2 1 C 2 dx x 1 x dx matches (a). x2 1 4. (a) d 2x sinx2 1 C 2xcosx2 12x 2 sinx2 1 22x2 cosx2 1 sinx2 1 dx (b) d 1 1 sinx2 1 C cosx2 12x x cosx2 1 dx 2 2 (c) d 1 1 sinx2 1 C cosx2 12x x cosx2 1 dx 2 2 (d) d 2x sinx2 1 C 2xcosx2 12x 2 sinx2 1 22x2 cosx2 1 sinx2 1 dx x cosx2 1 dx matches (c). 6. 2t 1 dt t2 t 2 u t 2 t 2, du 2t 1 dt Use 12. du . u sec 3x tan 3x dx u 3x, du 3 dx Use 308 sec u tan u du. 8. 2 dt 2t 12 4 10. u 2t 1, du 2dt, a 2 Use 2x x2 4 u x2 4, du 2x dx, n du . u2 a2 Use 14. 1 dx xx2 4 u x, du dx, a 2 Use dx du . u u2 a2 un du. 1 2 Section 7.1 309 18. Let u t 9, du dt. 16. Let u x 4, du dx. Basic Integration Rules 6x 45 dx 6 x 45 dx 6 x 46 C 6 2 2 dt 2 t 92 dt C t 92 t9 x 46 C 20. Let u 4 2x2, du 4x dx. x4 2x2 dx 22. x 3 dx 2x 32 1 4 2x2124xdx 4 1 4 2x232 C 6 x dx 3 2 x2 3 2x 31 C 2 2 1 3 x2 C 2 22x 3 24. Let u x2 2x 4, du 2x 1 dx. x1 x2 2x 4 dx 1 x2 2x 4122x 1 dx 2 x2 2x 4 C 26. 28. 2x dx x4 2 dx 8 dx 2x 8 ln x 4 C x4 1 1 1 1 1 1 dx 3 dx 3 dx 3x 1 3x 1 3 3x 1 3 3x 1 30. 32. x 1 1 x 3 sec 4x dx 1 4 x 1 1 1 1 3x 1 ln 3x 1 ln 3x 1 C ln C 3 3 3 3x 1 3 1 3 2 3 dx x x x x3 3 1 1 1 2 dx x2 3x 3 ln x C x x 2 x sec4x4 dx 34. Let u cos x, du sin x dx. 1 ln sec 4x tan 4x C 4 sin x cos x dx cos x12sin x dx 2cos x C 2 36. Let u cot x, du csc x dx. csc2 xecot x dx ecot xcsc2 x dx ecot x C 38. 3ex 5 dx 5 2 5 3ex 1 2 x ee dx x ex dx 3 2ex 5 1 2ex dx 2 3 2ex 5 ln 3 2ex C 2 2 2x 3 2 dx 310 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals sin x dx cos x 40. Let u lncos x, du tan xln cos x dx 1 cos d sin csc d cot d ln cos xtan x dx 2 1 2 dx 3sec x 1 3 sec x 1 sec x 1 sec x 1 dx 46. 2 sec x 1 dx 3 tan2 x 2 sec x 2 dx cot2 x dx 3 tan2 x 3 2 cos x 2 dx csc2 x 1 dx 3 sin2 x 3 2 1 2 2 cot x x C 3 sin x 3 3 3 dt 3 arctan t C t2 1 2 csc x cot x x C 3 1 1 50. Let u , du 2 dt. t t 48. Let u 3 x, du 3 dx. 3 1 1 dx dx 4 3x2 3 4 3x 2 3 x 1 arctan C 2 23 52. 54. 56. dy tan22x, 0, 0 dx 1 x 14x2 8x 3 1 1 4x x2 dx dx 2 2x 12x 12 1 1 5 x2 4x 4 y (a) (b) 1 dx tan22xdx e1t 1 dt e1t 2 dt e1t C t2 t dx arcsec 2x 1 C 1 5 x 22 dx arcsin sec22x 1 dx x 52 C a 5 1 tan2x x C 2 1.2 0, 0: 0 C x −0.6 0.6 y 1 tan2x x 2 − 1.2 1.2 −1 58. − 1.2 60. r (0, 1) 5 −2 2 −2 ln csc cot ln sin C lncos x2 C 2 tan x dx 44. 42. 1 et2 dt et 1 2et e2t dt et et 2 et dt et 2t et C Section 7.1 62. Let u 2x, du 2 dx. y 1 dx x4x2 1 Basic Integration Rules 64. Let u sin t, du cos t dt. 2 dx 2x2x2 1 sin2 t cos t dt 0 13 sin t 3 0 0 arcsec 2x C 66. Let u 1 ln x, du e 1 1 ln x dx x 68. 1 e 1 ln x 1 4 0 72. 1 25 x2 dx arcsin x 5 4 0 x2 dx x e 1 arcsin 2 1 1 2 dx x 1x dx 1 1 ln x2 2 70. 2 1 dx. x 2 x 2 ln x 1 1 ln 4 0.386 1 2 4 0.927 5 6 4 x2 1 x2 dx lnx2 4x 13 arctan C x2 4x 13 2 3 3 ` −10 10 The antiderivatives are vertical translations of each other. −6 74. ex ex 2 3 dx 1 3x e 9ex 9ex e3x C 24 sec u tan u du sec u C 76. The antiderivatives are vertical translations of each other. 5 −5 5 −5 78. Arctan Rule: du 4 1 arctan C a2 u2 a a 1 82. f x x3 7x2 10x 5 5 f x dx < 0 because 80. They differ by a constant: sec2 x C1 tan2 x 1 C1 tan2 x C. 2 84. 0 4 dx 4 x2 1 86. A sin 2x dx 0 Matches (d). 0 2 y more area is below the x-axis than above. 2 1 cos 2x 2 0 1 y 3 1 5 2 1 2 1 0 5 x 1 −5 2 3 4 x π 4 π 2 311 312 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 2 88. 2 x2 dx 0 2 A (c) Let f x x over the interval 0, 2. Revolve this region about the y-axis. (b) Let f x 2 x over the interval 0, 2. Revolve this region about the x-axis. (a) Let f x 2 x2 over the interval 0, 2. 2 x2 dx V V 2 2 2 x dx 0 y f ( x) = 2π x 2 20 xx dx 0 2 2 25 2 2 0 2 x2 dx 2 x2 dx 0 0 y 15 y 10 3 f ( x) = 2x 2 f ( x) = x 5 x 1 2 2 1 1 x 1 x 1 90. (a) (b) 1 n 0 n sinnx dx 0 3 1 n sinnxn dx 0 1 1 dx arctan x 3 3 31 x2 6 1 3 3 y n 1 cosnx 94. 1 0 2 y x 23 y x 1 y 2 1 1 x1 x x 2x 0 2 3x13 1 y 2 1 x x 1 dx 9 S 2 3 1 arctan 3 3 y 2x 92. 2 2 4 9x 23 8 s 1 1 4 dx 7.6337 9x23 9 2 2x 1 dx 0 3x 1 4 2 32 9 0 8 1010 1 256.545 3 y 12 9 6 3 x 3 6 Section 7.2 2. 9 12 Integration by Parts d 2 x sin x 2x cos x 2 sin x x2 cos x 2x sin x 2x sin x 2 cos x 2 cos x x2 cos x. Matches (d) dx Section 7.2 Integration by Parts 4. 1 d x x ln x 1 x ln x ln x. Matches (a) dx x 6. x2 e2x dx 8. u x2, dv e2x dx 12. dv ex dx ⇒ ln 3x dx 10. u ln 3x, dv dx v ex dx ex ux ⇒ du dx 2 x dx 2 xex dx ex 14. x2 cos x dx u x2, dv cos x dx e1t 1 dt e1t 2 dt e1t C t2 t ex dx 2xex ex C 2 xex 2xex 2ex C 16. dv x 4 dx ⇒ ⇒ du u ln x x 4 ln x dx 20. dv v ⇒ du 2 1 dx x ln x3 x5 x5 1 1 4 dx ln x x dx 5 x 5 5 x5 5 ln x 1 C 25 1 1 dx x2 x 1 dx x 1 ln x 1 C dx x2 x x v x2 12 x dx 1 2 x2 1 ⇒ du 2x3ex 2xex dx 2xex x2 1 dx 2 2 2 x3ex x2ex dx 2 2 1 2 x 1 x2 24. dv 1 dx ⇒ v x2 u ln 2x ⇒ du x dx ⇒ x2 12 u x2ex x5 1 ln x x5 C 5 25 ln x ln x dx x2 x 22. dv 18. Let u ln x, du 1 dx x x5 ln x 5 1 dx ⇒ x2 u ln x x5 5 v 2 2 2 xex dx 2 2 1 1 dx x2 x 1 dx x ln 2x ln 2x dx x2 x 2 x2ex ex ex C C 2 2 2 x 1 2 2 x 1 ln 2x 1 1 ln 2x 1 dx C C x2 x x x 1 dx. x ln x3 1x dx 2 1 ln x 2 C 313 314 Chapter 7 26. dv Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 1 2 3x dx ⇒ 2 2 3x12 dx 2 3x 3 ⇒ du dx ux v x 2 3x 2x2 3x 2 2 3x dx 3 3 dx 2x2 3x 4 22 3x 22 3x 2 3x32 C 9x 2 2 3x C 3x 4 C 3 27 27 27 28. dv sin x dx ⇒ v cos x ⇒ du dx ux x sin dx x cos x cos x dx x cos x sin x C 30. Use integration by parts twice. (2) u x, du dx, dv sin x dx, v cos x (1) u x2, du 2x dx, dv cos x dx, v sin x x2 cos x dx x2 sin x 2 x cos x x2 cos x dx x2 sin x 2 x sin x dx x2 sin x 2x cos x 2 sin x C 32. dv sec tan d ⇒ v sec tan d sec 34. dv dx ⇒ du d u sec tan d sec v sec d v (2) dv e x dx ⇒ e x dx e x v ex cos 2x dx ex cos 2x 2 ex sin 2x dx ex cos 2x 2 ex sin 2x 2 ex cos 2x dx 5 e x cos 2x dx ex cos 2x 2ex sin 2x e x cos 2x dx 38. dv dx ⇒ ex cos 2x 2 sin 2x C 5 vx u ln x ⇒ du 1 dx x y ln x y ln x dx x ln x x x 1 x2 e x dx e x u sin 2x ⇒ du 2 cos 2x dx u cos 2x ⇒ du 2 sin 2x dx dx dx 4 x arccos x 1 x2 C 36. Use integration by parts twice. ⇒ 1 1 x2 4 arccos x dx 4 x arccos x sec ln sec tan C (1) dv e x dx dx x u arccos x ⇒ du ⇒ 1 dx x ln x x C x 1 ln x C x cos x dx Section 7.2 40. Use integration by parts twice. (1) dv x 1 dx ⇒ v 315 2 x 112 dx x 132 3 ⇒ du 2x dx u x2 (2) dv x 132dx ⇒ v 2 x 132 dx x 152 5 ⇒ du dx ux y Integration by Parts x 2x 1 dx 2 4 4 2 2 2 x2 x 132 x x 132 dx x 2 x 132 x x 152 3 3 3 3 5 5 x 152 dx 2 x 132 2 8 16 x 2 x 132 x x 152 x 172 C 15x2 12x 8 C 3 15 105 105 ⇒ 42. dv dx u arctan y v dx x 1 2 1 x ⇒ du dx dx 2 1 x22 2 4 x2 arctan x x dx x arctan 2 2 y 44. (a) (b) 4 x 2x dx x arctan ln 4 x 2 C 4 x2 2 y x −6 dy 18 ex3 sin 2x, 0, dx 37 ex3 sin 2x dx Use integration by parts twice. 4 (1) u sin 2x, du 2 cos 2x −4 dv ex3 dx, v 3ex3 ex3 sin 2x dx 3ex3 sin 2x 6ex3 cos 2x dx (2) u cos 2x, du 2 sin 2x dv ex3 dx, v 3ex3 ex3 sin 2x dx 3ex3 sin 2x 6 3ex3 cos 2x 37 ex3 sin 2x dx 3ex3 sin 2x 18ex3 cos 2x C y ex3 sin 2x dx 1 3ex3 sin 2x 18ex3 cos 2x C 37 18 1 : 0 18 C ⇒ C 0 0, 18 37 37 37 y 1 x3 3e sin 2x 18ex3 cos 2x 37 6ex3 sin 2x dx C 316 46. Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals dy x sin x, y 0 4 dx y 48. See Exercise 3. (0, 4) 8 1 0 −5 x2e x dx x2e x 2xe x 2e x 1 0 e 2 0.718 10 −2 50. dv sin 2x dx ⇒ 1 sin 2x dx cos 2x 2 v ⇒ du dx ux 1 1 x sin 2x dx x cos 2x 2 2 52. dv x dx Thus, cos 2x dx x arcsin x2 dx 1 1 x cos 2x sin 2x C 2 4 x sin 2x dx 0 v u arcsin x2 ⇒ du 1 sin 2x 2x cos 2x C 4 ⇒ 14 sin 2x 2x cos 2x 0 . 2 2x dx 1 x4 x3 dx 1 x 4 1 x2 arcsin x2 2 1 x 412 C 2 4 1 2 x arcsin x2 1 x 4 C 2 x arcsin x2dx 0 x2 2 x dx x2 arcsin x2 2 1 Thus, 1 2. 4 54. Use integration by parts twice. (1) dv ex, v ex, u cos x, du sin x dx ex cos x dx ex cos x ex sin x dx (2) dv ex dx, v ex, u sin x, du cos x dx ex cos x dx ex cos x ex sin x ex cos x dx ⇒ 2 ex cos x dx ex sin x ex cos x Thus, 2 ex cos x dx 0 ⇒ 56. dv dx x e e 2 sin x ex cos x 2 2 v u ln 1 x2 ⇒ du 1 0 0 1 2 dx x 2x dx 1 x2 x ln 1 x2 2 2 ln 1 x2dx x ln 1 x2 Thus, sin 2 cos 2 2x2 dx 1 x2 1 1 dx x ln 1 x2 2x 2 arctan x C 1 x2 ln 1 x2 dx x ln 1 x2 2x 2 arctan x 1 0 ln 2 2 . 2 1 2 x arcsin x2 1 x 4 2 1 0 Section 7.2 58. u x, du dx, dv sec2 x dx, v tan x x sec2 x dx x tan x 60. 4 tan x dx 2 4 ln 22 0 1 ln 2 4 2 x3 cos 2x dx x3 u and its derivatives x3 e2x 3x2 2e2x 6x 1 2x 4e 6 8e2x 0 1 2x 16 e 2 8 16 x2 x 232dx x2 x 252 x x 272 x 292 C 5 35 315 76. 5 0 68. Yes. u ln x, dv x dx v and its antiderivatives u and its derivatives x3 3x2 1 2 6x 14 cos 2x 6 18 sin 2x 0 1 16 Alternate signs u and its derivatives x2 2x 2 5 x 252 2 4 35 x 272 0 8 315 x 292 2 x 252 35x2 40x 32 C 315 66. Answers will vary. See pages 488, 493. 4 sin d 1 Alternate signs 1 2 1 4x3 sin 2x 6x2 cos 2x 6x sin 2x 3 cos 2x C 8 74. v and its antiderivatives Alternate signs 12 sin 2x 3x 41 cos 2x 6x 81 sin 2x 6161 cos 2x C 3 3 3 1 x3 sin 2x x2 cos 2x x sin 2x cos 2x C 2 4 4 8 64. 4 0 1 1 2x 1 1 x 3e2x dx x 3 e2x 3x2 e2x 6x e2x 6 e C 2 4 8 16 1 e2x 4x3 6x2 6x 3 C 8 62. x sec x dx x tan x ln cos x 0 317 Hence, Integration by Parts 70. No. Substitution. cos 2x sin 2x cos 2x v and its antiderivatives x 232 72. No. Substitution. 1 4 cos 4 3 sin 12 2 cos 24 sin 24 cos C 5 x 4 25 x232 dx 1,171,875 arcsin x5 x 2x2 25 25 x252 625x 25 x232 46,875x25 x2 128 16 64 128 14,381.0699 5 0 318 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 78. (a) dv 4 x dx ⇒ v 2 4 x12 dx 4 x32 3 ⇒ du dx ux x 2 2 4 x dx x 4 x32 3 3 4 x32 dx 4 2 2 x 4 x32 4 x52 C 4 x32 3x 8 C 3 15 15 (b) u 4 x ⇒ x u 4 and dx du x4 x dx u 4u12du u32 4u12 du 8 2 2 u52 u32 C u32 3u 20 C 5 3 15 2 2 4 x323 4 x 20 C 4 x32 3x 8 C 15 15 80. (a) dv 4 x dx ⇒ v 4 x12 dx 82. n 0: 2 4 x32 3 ⇒ du dx ux 2 2 x4 x dx x 4 x32 3 3 n 1: n 2: 4 x 32 dx 4 2 x 4 x32 4 x52 C 3 15 (b) u 4 x ⇒ x 4 u and dx du 4u12 u32 du 2 8 u32 u52 C 3 5 u xn xex dx xex ex C xex ex dx x2ex dx x2ex 2xex 2ex C n 3: x3ex dx x3ex 3x2ex 6xex 6ex C x3ex 3 x2e x dx n 4: x 4ex dx x 4ex 4x3ex 12x2ex 24xex 24ex C x4 x dx 4 uu du 84. dv cos x dx ⇒ ex dx ex C x2ex 2 xex dx 2 4 x325x 2 4 x C 15 2 4 x32 3x 8 C 15 2 32 u 20 3u C 15 2 4 x3220 3 4 x C 15 2 4 x32 3x 8 C 15 v sin x ⇒ du n x n1 dx x n cos x dx xn sin x n xn1 sin x dx x 4ex 4 x3ex dx In general, x nex dx xnex nx n1ex dx. (See Exercise 86) 1 86. dv eax dx ⇒ v eax a u x n ⇒ du nx n1 dx x neax dx x neax n a a x n1eax dx Section 7.2 Integration by Parts 88. Use integration by parts twice. 1 v eax a (1) dv eax dx ⇒ u cos bx ⇒ du b sin bx eax cos bx dx Therefore, 1 eax cos bx b a a u sin bx ⇒ du b cos bx eax sin bx dx eax cos bx beax sin bx b2 2 a a2 a b2 a2 e ax 1 v eax a (2) dv eax dx ⇒ eax cos bx b eax sin bx b a a a a eax cos bx dx eax cos bx dx eax a cos bx b sin bx a2 cos bx dx eax a cos bx b sin bx C. a2 b2 eax cos bx dx 90. n 2 (Use formula in Exercise 84.) x2 cos x dx x2 sin x 2 x sin x dx (Use formula in Exercise 83.) n 1 x2 sin x 2 x cos x cos x dx x2 sin x 2x cos x 2 sin x C 92. n 3, a 2 (Use formula in Exercise 86 three times.) x3e2x dx x3e2x 3 2 2 1 A 9 1 9 x2e2x dx n 3, a 2 x3e2x 3 x2e2x 2 2 2 x3e2x 3x2e2x 3 xe2x 1 2 4 2 2 2 e2x 3 4x 6x2 6x 3 C 8 xe2x dx n 2, a 2 94. dv ex3 dx ⇒ ux v 3ex3 e2x dx x3e2x 3x2e2x 3xe2x 3e2x C n 1, a 2 2 4 4 8 96. A x3 xe 0 ⇒ du dx 3 See Exercise 83. dx 3 0 3xe 3 e x3 3 3 x3 0 0 1 9 9ex3 9 e dx 0 1 1 2 1 1 0.264 e e e 0.4 −1 4 − 0.1 −1 4 3 −1 x sin x dx x cos x sin x 0 319 320 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 98. In Example 6, we showed that the centroid of an equivalent region was 1, 8. By symmetry, the centroid of this region is 8, 1. π 2 You can also solve this problem directly. 1 A 0 arcsin x dx x x arcsin x 1 x2 2 2 My A x Mx A y 1 x 0 1 0 y 1 0 Example 3 x 1 2 2 0 1 1 arcsin x dx 2 8 2 arcsin x arcsin x dx 1 2 2 2 100. (a) Average 1 4 (b) Average 2 1.6t ln t 1 dt 0.8t2 ln t 0.4t2 t 1 1.6t ln t 1 dt 0.8t2 ln t 0.4t2 t 3 4 3 3.2 ln 2 0.2 2.018 12.8 ln 4 7.2 ln 3 1.8 8.035 102. c t 30,000 500t, r 7%, t1 5 5 30,000 500te0.07t dt 500 P 0 5 60 te0.07t dt 0 Let u 60 t, dv e0.07t dt, du dt, v 60 t 1007 e P 500 0.07t 5 0 100 0.07t e . 7 5 100 7 e0.07t dt 0 e $131,528.68 60 t 1007 e 10,000 49 500 104. 0.07t 5 0.07t 0 0 x 2 cos nx dx 5 x2 2 2x sin nx 2 cos nx 3 sin nx n n n 2 2 cos n 2 cos n n2 n 4 cos n n2 44nn ,, ifif nn isis even odd 1n 4 n2 2 2 106. For any integrable function, f x dx C f x dx, but this cannot be used to imply that C 0. 2 , sin x ≤ 1 ⇒ x sin x ≤ x ⇒ 108. On 0, 2 0 x sin x dx ≤ 2 0 x dx. Section 7.3 Trigonometric Integrals 321 110. fx cosx, f 0 2 (a) It cannot be solved by integration. Section 7.3 (b) You obtain the points 4 n xn yn 0 0 2 1 0.05 2.05 2 0.10 2.098755 3 0.15 2.146276 80 2.8403565 4.0 0 4 0 Trigonometric Integrals 2. (a) y sec x ⇒ y sec x tan x sin x sec2 x. (b) y cos x sec x ⇒ y sin x sec x tan x sin x sec2 x sin x Matches (iii) sin x1 sec2 x sin x tan2 x Matches i (c) y x tan x 1 3 tan x ⇒ y 1 sec2 x tan2 x sec2 x 3 tan2 x tan2 x1 tan2 x tan4 x Matches iv (d) y 3x 2 sin x cos3 x 3 sin x cos x ⇒ y 3 2 cos xcos3 x 6 sin x cos2 xsin x 3 cos2 x 3 sin2 x 3 2 cos4 x 6 cos2 x1 cos2 x 3 cos2 x 31 cos2 x 8 cos4 x Matches ii 4. cos 3 x sin4 x dx cos x1 sin2 xsin4 x dx sin4 x sin6 xcos x dx sin5 x sin7 x C 5 7 6. Let u cos x, du sin x dx. sin3 x dx 1 x x 8. Let u sin , du cos dx. 3 3 3 cos3 x dx 3 cos 3 x 3 1 sin 3x dx 1 sin2 2 x 3 13 cos 3x dx 3 sin x 1 x sin3 C 3 3 3 3 sin x x sin3 C 3 3 sin x1 cos2 x dx cos2 xsin x dx 1 cos3 x cos x C 3 sin x dx 322 10. Chapter 7 sin5 t dt cos t 12. sin2 2x dx Integration Techniques, L’Hôpital’s Rule, and Improper Integrals sin t1 cos2 t2cos t12 dt sin t1 2 cos2 t cos4 tcos t12 dt 4 2 cos t12 2cos t32 cos t72 sin t dt 2cos t12 cos t52 cos t92 C 5 9 1 cos 4x 1 1 dx x sin 4x C 2 2 4 14. sin4 2 d 1 4x sin 4x C 8 1 cos 4 2 1 cos 4 d 2 1 1 2 cos 4 cos2 4 d 4 1 cos 8 d 2 1 4 1 2 cos 4 1 4 3 1 2 cos 4 cos 8 d 2 2 1 3 1 1 sin 4 sin 8 C 4 2 2 16 1 1 3 sin 8 C sin 4 8 8 64 16. Use integration by parts twice. dv sin2 x dx 1 cos 2x x sin 2x 1 2x sin 2x ⇒ v 2 2 4 4 u x2 ⇒ du 2x dx dv sin 2x dx ⇒ 1 v cos 2x 2 ⇒ du dx ux 1 1 x2 sin2 x dx x22x sin 2x 4 2 2x2 x sin 2x dx 1 1 1 1 x3 x2 sin 2x x3 2 4 3 2 x sin 2x dx 1 1 1 1 1 x3 x2 sin 2x x cos 2x 6 4 2 2 2 cos 2x dx 1 1 1 1 x3 x2 sin 2x x cos 2x sin 2x C 6 4 4 8 1 4x3 6x2 sin 2x 6x cos 2x 3 sin 2x C 24 2 18. Let u sin x, du cos x dx. 2 cos5 x dx 0 20. 0 2 1 sin2 x2 cos x dx 0 2 1 2 sin2 x sin4 x cos x dx 0 sin x 8 15 sin2 x dx 2 2 3 1 sin x sin5 x 3 5 0 1 2 2 1 cos 2x dx 0 2 1 1 x sin 2x 2 2 0 4 Section 7.3 22. sec22x 1 dx 1 tan2x 1 C 2 24. sec6 3x dx 28. 30. Let u sec 2t, du 2 sec 2t tan 2t 32. 36. 26. tan2 x dx sec2 x 1dx tan x x C tan3 2t sec3 2t dt 34. sec2 42. y sin2 x cos2 x 2 1 1 tan 3x tan3 3x tan5 3x C 3 9 15 tan5 2x sec2 2x dx tan3 3x dx x x x 1 x tan dx 2 tan sec2 dx 2 2 2 2 2 tan2 x sec5 x 1 2 tan2 3x tan4 3xsec2 3x dx 1 x x x sec2 dx C tan4 2 2 2 2 x C 2 tan2 38. 1 tan2 3x2 sec2 3x dx 1 tan6 2x C 12 sec5 2t sec3 2t C 10 6 sec4 2t sec2 2tsec 2t tan 2t dt sec2 or 323 sec2 2t 1sec3 2t tan 2t dt x x x 1 x x tan dx 2 sec sec tan dx 2 2 2 2 2 2 sec2 tan3 Trigonometric Integrals sec2 3x 1tan 3x dx 1 3 sin 3x 1 tan 3x3 sec2 3x dx dx 3 3 cos 3x 1 2 1 tan 3x ln cos 3x C 6 3 x C 2 cos2 d 2 2 cos5 x dx 40. s sin2 x cos3 x dx sin2 x1 sin2 xcos x dx sin2 x sin4 xcos x dx sin 2 1 C 8 2 1 2 sin 2 C 16 sin3 x sin5 x C 3 5 tan x sec4 x dx tan12 xtan2 x 1sec2 x dx tan52 x tan12 x sec2 x dx 2 2 72 tan x tan32 x C 7 3 sin2 1 cos 2 1 4 1 2cos d 1 cos 4 sin2 d 1 8 1 cos 2 d 2 d 324 Chapter 7 44. (a) Integration Techniques, L’Hôpital’s Rule, and Improper Integrals y (b) 1 y y tan3 x C 3 x −1 1 ( ) 1 0, 4 −1 1 dy sec2 x tan2 x, 0, dx 4 sec2 x tan2 x dx u tan x, du sec2 x dx 0, 41: 41 C ⇒ y 31 tan 3 46. dy 3y tan2 x, y0 3 dx 8 48. cos 4 cos3 d (0, 3) −1 1 x 1 4 cos 4 cos 3 d 1 cos 7 cos d 2 sin 7 sin C 14 2 −2 50. x 1 x 52. Let u tan , du sec2 dx. 2 2 2 sin4x cos 3x dx sin 4x cos 3x dx 1 2 1 1 cos x cos 7x C 2 7 sin x sin 7xdx tan4 x x sec4 dx 2 2 csc2 3x cot 3x dx 1 3 56. tan4 2 1 7 cos x cos 7x C 14 54. u cot 3x, du 3 csc2 3x dx cot3 t dt csc t cot 3x3 csc2 3x dx 1 cot2 3x C 6 x x x tan2 1 sec2 dx 2 2 2 tan6 x x tan4 2 2 12 sec 2x dx 2 x 2 2 7x tan tan5 C 7 2 5 2 cos3 t dt sin2 t cos t dt sin2 t 1 sin2 tcos t dt sin2 t cos t dt 1 sin t C sin t csc t sin t C 58. 60. sin2 x cos2 x dx cos x 1 sec t dt cos t 1 1 2 cos 2 x dx cos x sec x 2 cos x dx lnsec x tan x 2 sin x C cos t 1 dt cos t 1 cos t 62. 0 3 0 sec2 ttan t dt 2 3 tan t 32 0 2 3 3 sec2 x 1 dx 0 3 tan x x 66. 4 tan2 x dx sec t dt ln sec t tan t C 64. Let u tan t, du sec2 t dt. 4 0 sin 3 cos d 1 2 3 3 sin 4 sin 2 d 1 1 1 cos 4 cos 2 2 4 2 0 Section 7.3 2 68. sin2 x 1 dx 2 70. sin2 x cos2 x dx 2 2 2 2 Trigonometric Integrals 325 2x 1 dx 1 cos 2 2 32 21 cos 2x dx 32 x 41 sin 2x 1 4x sin 4x C 32 72. 2 3 2 tan31 x dx tan21 x ln cos1 x C 2 2 2 −6 6 −3 3 −2 74. −2 sec41 x tan1 x dx 2 sec41 x C 4 76. 1 cos 2 d 0 2 − 3.5 3 1 3 2 4 3.5 −2 2 78. sin6 x dx 0 2 1 5x 3 1 2 sin 2x sin 4x sin3 2x 8 2 8 6 0 5 32 80. See guidelines on page 500. 82. (a) Let u tan x, du sec2 x dx. sec2 x tan x dx (b) 8 1 2 tan x C1 2 −4 Or let u sec x, du sec x tan x dx. (c) 1 1 1 1 1 sec2 x C tan2 x 1 C tan2 x C tan2 x C2 2 2 2 2 2 84. Disks y Rx tan x rx 0 V 2 1 1 2 4 2 tan x dx − 12 0 2 4 −2 1 sec xsec x tan x dx sec2 x C 2 −1 4 sec x 1 dx 2 0 2 1 4 2 tan x x 0 1.348 4 π 8 π 4 x 2 2 2 sin 4 sin 2 0 326 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 2 86. (a) V cos2 x dx 0 (b) A 2 2 2 0 2 cos x dx sin x 0 1 cos 2x dx 0 1 x sin 2x 2 2 2 0 2 4 1 Let u x, dv cos x dx, du dx, v sin x. x 2 0 y 1 2 1 4 0 2 2 sin x dx x sin x cos x 0 0 2 1 2 2 2 cos2 x dx y 0 2 1 1 cos 2x dx 0 2 1 1 x sin 2x 4 2 x, y 2 x cos x dx x sin x 0 ( π 2− 2 , π8 ( 1 2 8 π 4 2 2, 8 88. dv cos x dx ⇒ π 2 x v sin x u cosn1 x ⇒ du n 1cosn2 x sin x dx cosn x dx cosn1 x sin x n 1 cosn2 x sin2 x dx cosn1 x sin x n 1 cosn2 x1 cos2 x dx cosn1 x sin x n 1 cosn2 x dx n 1 cosn x dx Therefore, n cosn x dx cosn1 x sin x n 1 cosn2 x dx cosn x dx cosn1 x sin x n 1 n n cosn2 x dx. 90. Let u secn2 x, du n 2secn2 x tan x dx, dv sec2 x dx, v tan x. secn x dx secn2 x tan x n 2 secn2 x tan2 x dx secn2 x tan x n 2 secn2 xsec2 x 1 dx secn2 x tan x n 2 secn x dx secn2 x dx n 1 secn x dx secn2 x tan x n 2 secn2 x dx secn x dx 92. cos4 x dx 1 n2 secn2 x tan x n1 n1 cos3 x sin x 3 4 4 cos2 x dx secn2 x dx cos3 x sin x 3 cos x sin x 1 4 4 2 2 dx 1 3 3 1 cos3 x sin x cos x sin x x C 2 cos3 x sin x 3 cos x sin x 3x C 4 8 8 8 Section 7.3 94. sin4 x cos2 x dx cos3 x sin3 x 1 6 2 cos2 x sin2 x dx cos3 x sin x 1 cos3 x sin3 x 1 6 2 4 4 cos2 x dx x 1 1 cos x sin x 1 C cos3 x sin3 x cos3 x sin x 6 8 8 2 2 1 8 cos3 x sin3 x 6 cos3 x sin x 3 cos x sin x 3x C 48 96. (a) n is odd and n ≥ 3. 2 cosn x dx 0 cosn1 x sin x n 2 0 2 n1 n n1 n n 2 n1 n n2n4 n1 n n2n4... cosn3 x sin x n2 n3 n3 n3 2 0 n3 n2 cosn5 x sin x n4 n5 cosn2 x dx 0 2 0 0 n5 2 cos x dx 0 n3 n5 n2n4...1 0 (Reverse the order) 234567. . .n n 1 234567. . .n n 1 n1 n n3 n5 n2n4... n1 n n3 2 cos2 x dx (From part (a).) 0 n5 2 n 2 n 4 . . . 2 4 sin 2x 0 n1 n 2 123456. . .n n 1 123456. . .n n 12 n3 n5 x n2n4... 4 1 (Reverse the order) cosn6 x dx 0 2 (b) n is even and n ≥ 2. 0 n5 n4 2 n1 n cosn x dx cosn4 x dx 0 cosn6 x dx 2 2 2 n n 1 nn 32 nn 54 . . . sin x 1 n1 n Trigonometric Integrals 327 328 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals Section 7.4 2. Trigonometric Substitution 1 x 1 d xx2 16 1 1 x 8 ln x2 16 x xx2 16 C 8 x2 16 2 2 dx 2 2 2 x 16 x x 16 4. x2 x2 16 x2 16 8 x x2 16 x2 2 2 2 x 16 x 16 x 2x 16 16 x2 x2 16 2x2 16 Indefinite integral: 2 x2 x2 16 Matches (d) x 3 x 37 6x x2 1 d 8 arcsin C 8 dx 4 2 1 x 342 8 16 x 3 2 4 2 x 3 1 3x 1 7 6x x2 16 x 32 x 32 2 2 216 x 3 16 x2 6x 9 16 x2 6x 9 216 x 32 216 x 32 216 x 32 16 x 32 Indefinite integral: 7 6x x2 7 6x x2 dx Matches (c) 6. Same substitution as in Exercise 5. 10 x225 x2 dx 10 5 cos d 25 sin2 5 cos 2 2 225 x2 csc2 d cot C C 5 5 5x 8. Same substitution as in Exercise 5 x2 dx 25 x2 25 sin2 25 5 cos d 5 cos 2 1 25 25 sin 2 C sin cos C 2 2 2 25 x x arcsin 2 5 5 25 x2 5 10. Same substitution as in Exercise 9 x2 4 x 1 cos 2 d dx 2 tan 2 sec tan d 2 2 sec 2tan C 2 x2 4 2 C 21 25 arcsin 5x x 25 x2 C tan2 d 2 sec2 1 d arcsec 1 7 6x x2 2 2x C x 2 4 2 arcsec 2x C Section 7.4 12. Same substitution as in Exercise 9 x3 dx 4 x2 8 sec3 2 sec tan d 8 sec4 d 2 tan 8 1 tan2 sec2 d 8 tan 8 x2 4 3 2 3 x 4 4 C 31 2 14. Same substitution as in Exercise 13. Trigonometric Substitution tan3 8 C tan 3 tan2 C 3 3 1 3 x2 4 12 x2 4 C x2 4 x2 8 C 9x3 tan3 sec3 dx 9 sec2 d 9 sec2 1sec tan d 9 sec C 2 1 x sec 3 3 sec sec2 3 C 31 x2 1 x2 3 C 31 x2x2 2 C 16. Same substitution as in Exercise 13 x2 dx 1 x22 x2 dx 1 x2 4 1 2 tan2 sec2 d sec4 1 cos 2 d sin2 d 1 sin 2 1 sin cos C 2 2 2 x 1 arctan x 2 1 x2 1 1 x2 C 21 arctan x 1 x x C 2 18. Let u x, a 1, and du dx. 1 x2 dx 20. 1 x1 x2 ln x 1 x2 C 2 x 1 dx 9 x2122x dx 2 9 x 2 9 x212 C 22. 1 25 x2 dx arcsin x C 5 (Power Rule) 24. Let u 16 4x2, du 8x dx. x16 4x2 dx 1 8 16 4x2128x dx 1 2 16 4x232 C 4 x232 C 12 3 26. Let u 1 t 2, du 2t dt. t 1 dt 1 t 232 2 28. Let 2x 3 tan , dx 4x2 9 x4 1 t 2322t dt C 3 sec2 d, 4x2 9 3 sec . 2 dx 8 9 8 C 27 sin3 3 sec 32 sec2 d 324 tan4 1 1 t 2 cos d sin4 8 csc3 C 27 4x2 932 C 27x3 4x 2 + 9 2x θ 3 329 330 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 30. Let 2x 4 tan , dx 2 sec2 d, 4x2 16 4 sec . 1 dx x4x2 16 1 4 2 sec2 d 2 tan 4 sec sec 1 d tan 4 x2 + 4 x csc d θ 2 1 1 x2 4 2 ln csc cot C ln C 4 4 x 32. Let x 3 tan , dx 3 sec2 d, x2 3 3 sec2 . x2 1 dx 332 1 3 3 sec2 d 33 sec3 x2 + 3 x cos d θ 3 1 sin C 3 x C 3x2 3 34. Let u x2 2x 2, du 2x 2 dx. x 1x2 2x 2 dx 1 2 1 x2 2x 2122x 2 dx x2 2x 232 C 3 36. Let x sin , x sin2 , dx 2 sin cos d, 1 x cos . 1 x x dx cos 2 sin cos d sin 1 2 cos2 d x θ 1− x 1 cos 2 d sin cos C arcsinx x1 x C 38. Let x tan , dx sec2 d, x2 1 sec2 . 1 x3 x 1 dx x 4 2x2 1 4 x4 4x3 4x dx 2x2 1 1 lnx 4 2x2 1 4 1 1 lnx2 1 2 2 1 dx x2 12 d sec4 θ 1 1 cos 2 d 1 1 lnx2 1 sin cos C 2 2 1 x lnx2 1 arctan x 2 C 2 x 1 x2 + 1 x sec2 Section 7.4 40. u arcsin x, ⇒ du x arcsin x dx 1 x2 dx, dv x dx ⇒ v 2 2 1 x x2 1 x2 arcsin x dx 2 2 1 x2 x sin , dx cos d, 1 x2 cos x arcsin x dx Trigonometric Substitution x2 1 arcsin x 2 2 x2 1 sin2 cos d arcsin x cos 2 4 1 cos 2 d 1 1 1 x2 x2 arcsin x sin 2 C arcsin x sin cos C 2 4 2 2 4 1 1 x2 arcsin x arcsin x x1 x2 C 2x2 1 arcsin x x1 x2 C 2 4 4 42. Let x 1 sin , dx cos d, 1 x 12 2x x2 cos . x2 2x x2 dx x2 1 x 12 dx 1 1 sin 2cos d cos 1 2 sin sin2 x−1 θ 1 − (x − 1)2 d 3 1 2 sin cos 2 d 2 2 1 3 2 cos sin 2 C 2 4 1 3 2 cos sin cos C 2 2 1 3 arcsinx 1 22x x2 x 12x x2 C 2 2 3 1 arcsinx 1 2x x2x 3 C 2 2 44. Let x 3 2 sec , dx 2 sec tan d, x 32 4 2 tan . x dx x 6x 5 2 x dx x 32 4 2 sec 3 2 sec tan d 2 tan 2 sec2 3 sec d 2 tan 3 ln sec tan C1 2 x 33 4 2 3 lnx 2 3 x 32 4 2 C1 x2 6x 5 3 ln x 3 x2 6x 5 C 331 332 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 46. Same substitution as in Exercise 45 (a) 1 dt 1 t252 32 Thus, 0 cos d cos5 sec4 d tan2 1 sec2 d 1 3 1 t tan tan C 3 3 1 t 2 t 1 t3 2 52 dt 1 t 31 t 232 1 t 2 3 t 1 t 2 C 32 0 32 338 3 3 23 3.464. 31432 14 (b) When t 0, 0. When t 32, 3. Thus, 32 0 1 1 3 dt tan tan 1 t252 3 48. (a) Let 5x 3 sin , dx 1 3 3 3 23 3.464. 3 3 cos d, 9 25x2 3 cos . 5 9 1 cos 2 d 5 2 0 3 3 cos cos d 5 9 25x2 dx 9 1 sin 2 C 10 2 9 sin cos C 10 5x 5x 9 arcsin 10 3 3 35 Thus, 3 9 25x2 dx 0 9 25x2 3 C 9 5x 5x9 25x2 arcsin 10 3 9 35 0 9 9 . 10 2 20 3 (b) When x 0, 0. When x , . 5 2 35 Thus, 9 25x2 dx 2 109 sin cos 0 0 9 9 . 10 2 20 50. (a) Let x 3 sec , dx 3 sec tan d, x2 9 3 tan . x2 9 x2 dx 3 tan 3 sec tan d 9sec2 tan2 d sec sin2 d cos 1 cos2 d cos sec cos d ln sec tan sin C ln —CONTINUED— x 3 x2 9 9 C 3 x x2 Section 7.4 Trigonometric Substitution 333 50. —CONTINUED— 6 Hence, x2 9 x2 3 dx ln . 3 (b) When x 3, 0; when x 6, 6 Hence, x2 9 x2 3 52. 54. x2 9 x2 9 x 3 3 x dx ln sec tan sin 3 0 6 3 ln 2 3 3 ln 2 3 2 3 2 . . 1 75 x2 2x 1132 dx x 1x2 2x 26x2 2x 11 ln x2 2x 11 x 1 C 4 2 x2x2 4 dx 1 3 2 1 x x 4 xx2 4 2 ln x x2 4 C 4 2 56. (a) Substitution: u x2 1, du 2x dx (b) Trigonometric substitution: x sec 58. (a) x2 y k2 25 1 (b) Area square circle 4 y Radius of circle 5 k 2 52 52 50 1 25 52 25 1 4 4 (0, k) k 52 5 1 (c) Area r 2 r 2 r 2 1 4 4 5 5 x 60. (a) Place the center of the circle at 0, 1; x2 y 12 1. The depth d satisfies 0 ≤ d ≤ 2. The volume is V32 6 d 1 y 12 dy 0 1 arcsiny 1 y 11 y 12 2 d (Theorem 7.2 (1)) 0 3arcsind 1 d 11 d 12 arcsin1 (b) 3 3 arcsind 1 3d 12d d 2. 2 d 10 V6 (d) 1 y 12 dy 0 dV dV dt dd 0 dd 61 d 12 dt 1 dt 4 2 0 (c) The full tank holds 3 9.4248 cubic meters. The horizontal lines y ⇒ dt (e) 1 241 d 12 0.3 9 3 3 , y , y 4 2 4 intersect the curve at d 0.596, 1. 0, 1.404. The dipstick would have these markings on it. 0 2 0 The minimum occurs at d 1, which is the widest part of the tank. 334 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 62. Let x h r sin , dx r cos d, r 2 x h2 r cos . y Shell Method: hr V 4 xr 2 x h2 dx x hr 4 2 2 h2 2 4 r 2 2 1 cos 2 d r 2 2 r 2h h r sin r cos r cos d 4 r 2 1 sin 2 2 2 2 h−r 2 4 r 3 h r sin cos2 d sin cos2 d 3 h+r 2 2 cos3 h 2 r 2 2 r 2h 2 x−h θ r 2 − (x − h)2 1 64. y x2, y x, 1 y2 1 x2 2 4 s 1 x2 dx 0 12xx 2 4 1 ln x x2 1 (Theorem 7.2) 0 1 417 ln4 17 9.2936 2 66. (a) Along line: d1 a2 a4 a1 a2 y Along parabola: y x2, y 2x (a, a 2) a d2 1 4x2 dx 0 y = x2 a 1 2x4x2 1 ln 2x 4x2 1 4 (Theorem 7.2) 0 x (0, 0) 1 2a4a2 1 ln2a 4a2 1 4 (b) For a 1, d1 2 and d2 5 2 1 ln2 5 1.4789. 4 For a 10, d1 10101 100.4988 d2 101.0473. (c) As a increases, d2 d1 → 0. 68. (a) (b) y 0 for x 72 25 − 10 80 −5 (c) y x x2 x x , y 1 , 1 y 2 1 1 72 36 36 72 s 1 1 0 36 2 x 36 2 72 dx 36 18 x 36 0 1 1 x 36 2 x 36 1 1 2 ln 1 2 1 2 ln 1 361 dx 2 x 36 1 1 36 2 ln 1 2 x 36 2 18 ln 2 72 0 2 1 2 1 82.641 Section 7.4 Trigonometric Substitution y 70. First find where the curves intersect. y 2 16 x 42 6 1 4 x 16 (4, 4) 4 2 16 2 16x 4 2 x4 x −2 −2 16 2 16x 2 128x 162 x4 x4 16x2 2 4 0 −6 128x 0 1 1 1 2 x dx 42 x3 4 4 12 4 My x 0 x4 16 1 2 x dx 4 4 0 4 y= 16 4 3 8 x16 x 42 dx 4 8 4 0 8 x 416 x 42 dx 4 16 416 x 42 dx 4 13 16 x 4 8 2 32 4 2 16 arcsin x4 x 416 x 42 4 1 16 1632 2 16 3 2 16 16 643 16 112 3 4 Mx 0 dx 8 2 1 1 2 x 2 4 4 1 16 x 42 dx 2 321 x5 8x x 6 4 64 416 32 64 32 5 6 15 5 4 3 8 0 4 x My 1123 16 112 48 28 12 4.89 A 163 4 16 12 4 3 y Mx 41615 104 1.55 A 163 4 54 3 x, y 4.89, 1.55 72. Let r L tan , dr L sec2 d, r 2 L2 L2 sec2 . 1 R R 0 b 2mL 2mL dr r 2 L232 R 2m RL a L sec2 d L3 sec3 b cos d RL sin 2m RL b a r r 2 L2 2m LR 2 L2 r 2 + L2 r θ L a 2m 6 10 −4 xx 4x2 4x 32 ⇒ x 0, 4 A 4 R 0 8 4 16 − (x − 4) 2 335 336 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 0.8 74. (a) Finside 48 1 0.8 y21 y 2 dy 0.8 96 0.8 1 0.8 1 y2 dy 1 y1 y 2 dy 2 arcsin y y1 y 31 y 0.8 96 0.8 1 2 961.263 121.3 lbs 2 32 1 0.4 (b) Foutside 64 1 0.4 y21 y 2 dy 0.4 128 0.4 128 1 0.4 1 y 2 dy y1 y 2 dy 1 0.4 arcsin y y1 y 2 31 1 y 232 2 76. S 1520.4 111.2t 15.8t2 (a) 0.4 1 92.98 78. False 60 x2 1 x dx 0 7 tan sec tan d sec tan2 d 0 1 (b) St 1520.4 111.2t 15.8t212111.2 31.6t 2 S5 2.71 (c) Average value 80. True 1 1 St dt 68.24 x21 x2 dx 2 1 2 12 10 1 x21 x2 dx 2 0 Section 7.5 sin2 cos cos d 2 0 2 sin2 cos2 d 0 Partial Fractions 2. 4x 2 3 A B C x 53 x 5 x 52 x 53 6. 2x 1 A Bx C Dx E 2 2 xx 2 12 x x 1 x 12 8. 1 1 A B 4x 2 9 2x 32x 3 2x 3 2x 3 4. 1 A2x 3 B2x 3 3 2, 1 1 dx 4x2 9 6 2x 1 3 dx 2x 1 3 dx 1 ln 2x 3 ln 2x 3 C 12 1 2x 3 ln C 12 2x 3 10. x2 x2 A B x 2 4x 3 x 1x 3 x 1 x 3 x1 dx x2 4x 3 1 6. When x 1 6A, A When x 32 , 1 6B, B 16 . 2 x 1 dx x 1x 3 1 dx ln x 3 C x3 Section 7.5 12. Partial Fractions 337 5x2 12x 12 A B C xx 2x 2 x x2 x2 5x2 12x 12 Ax2 4 Bxx 2 Cxx 2 When x 0, 12 4A ⇒ A 3. When x 2, 16 8B ⇒ B 2. When x 2, 32 8C ⇒ C 4. 14. 5x2 12x 12 dx x3 4x 3 dx x 2 dx x2 4 dx 3 ln x 2 ln x 2 4 ln x 2 C x2 x3 x 3 2x 1 A B x1 x1 x2 x 2 x 2x 1 x2 x1 2x 1 Ax 1 Bx 2 When x 2, 3 3A, A 1. When x 1, 3 3B, B 1. x3 x 3 dx x2 x 2 16. x1 1 1 dx x2 x1 x2 x2 x ln x 2 ln x 1 C x ln x 2 x 2 C 2 2 x2 A B xx 4 x 4 x 18. 2x 3 A B x 12 x 1 x 12 x 2 Ax Bx 4 2x 3 Ax 1 B When x 4, 6 4A, A 32 . When x 0, 2 4B, B 12 . x2 dx x 2 4x When x 1, B 1. When x 0, A 2. 32 12 dx x4 x 2x 3 dx x 12 2 1 dx x 1 x 12 2 ln x 1 3 1 ln x 4 ln x C 2 2 20. 1 C x1 4x2 4x2 4x2 A B C x3 x2 x 1 x2x 1 x 1 x2 1x 1 x 1 x 1 x 12 4x2 Ax 12 Bx 1x 1 Cx 1 When x 1, 4 2C ⇒ C 2. When x 1, 4 4A ⇒ A 1. When x 0, 0 1 B 2 ⇒ B 3. x3 4x2 dx x1 x2 1 dx x1 3 dx x1 ln x 1 3 ln x 1 22. 2 dx x 12 2 C x 1 6x A 6x Bx C x3 8 x 2x2 2x 4 x 2 x2 2x 4 6x Ax2 2x 4 Bx Cx 2 When x 2, 12 12A ⇒ A 1. When x 0, 0 4 2C ⇒ C 2. When x 1, 6 7 B 21 ⇒ B 1. 6x dx x3 8 1 dx x2 x 2 dx x2 2x 4 1 dx x2 3 arctan x 1 dx x2 2x 4 1 3 x1 arctan C ln x2 2x 4 3 2 3 1 ln x2 2x 4 2 ln x 2 ln x 2 3x 1 3 C 3 dx x2 2x 1 3 338 24. Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals x2 x 9 Ax B Cx D 2 2 x2 92 x 9 x 92 x2 x 9 Ax Bx2 9 Cx D Ax3 Bx2 9A Cx 9B D By equating coefficients of like terms, we have A 0, B 1, D 0, and C 1. x2 x 9 x2 92 26. 1 dx x2 9 x dx x2 92 x 1 1 arctan C 3 3 2x2 9 x 2 4x 7 A Bx C x 1x 2 2x 3 x 1 x 2 2x 3 x 2 4x 7 Ax 2 2x 3 Bx Cx 1 When x 1, 12 6A. When x 0, 7 3A C. When x 1, 4 2A 2B 2C. Solving these equations we have A 2, B 1, C 1. x 2 4x 7 dx 2 x3 x 2 x 3 1 dx x1 2 ln x 1 28. x 1 dx x 2 2x 3 1 ln x 2 2x 3 C 2 x 2 x 3 Ax B Cx D 2 2 x 2 32 x 3 x 32 x 2 x 3 Ax Bx 2 3 Cx D Ax 3 Bx 2 3A Cx 3B D By equating coefficients of like terms, we have A 0, B 1, 3A C 1, 3B D 3. Solving these equations we have A 0, B 1, C 1, D 0. x2 x 3 dx x4 6x 2 9 30. 1 x dx x 2 3 x 2 32 1 3 arctan x 3 1 C 2x 2 3 x1 A B C 2 x 2x 1 x x x1 x 1 Axx 1 Bx 1 Cx 2 When x 0, B 1. When x 1, C 2. When x 1, 0 2A 2B C. Solving these equations we have A 2, B 1, C 2. 5 1 x1 dx 2 x 1 x2 5 1 1 dx x 5 1 5 1 dx 2 x2 1 1 1 2 ln x 2 ln x 1 x 2 ln 2 ln x 1 x1 x 5 4 3 5 5 1 1 dx x1 5 Section 7.5 x2 x1 2 7 6x 2 1 1 dx 3 ln C x 2x 13 x x x 1 2x 12 1 32. 0 34. x2 x dx x1 1 0 0 x2 2x 1 dx x ln x 2 x 1 x1 0 1 ln 3 1 2, 1: 3 ln 1 dx Partial Fractions 4 1 1 2 7 1 C 1⇒ C 2 3 ln 2 2 1 2 2 (2, 1) − 4.7 4.7 −4 36. x2 3, 4: x3 1 2 C dx ln x 2 4 2 4 2 2 x 4 8 2 22 1 1 ln 5 C 4 ⇒ C ln 5 2 5 5 2 (3, 4) −8 8 −2 38. x2x 9 1 5 dx 2 ln x 2 C x 3 6x 2 12x 8 x 2 x 22 10 3, 2: 0 1 5 C 2 ⇒ C 4 (3, 2) − 10 10 −3 40. x2 x 2 dx arctan x ln x 1 C x3 x2 x 1 10 2, 6: arctan 2 0 C 6 ⇒ C 6 arctan 2 (2, 6) −2 5 −2 42. Let u cos x, du sin x dx. 44. 1 A B uu 1 u u1 1 Au 1 Bu 1 Au 1 Bu When u 0, A 1. When u 1, B 1, u cos x. du sin dx. sin x 1 dx du cos x cos2 x uu 1 1 A B , u tan x, du sec2 x dx uu 1 u u1 1 du u ln u 1 ln u C ln u1 C u ln cos x 1 C cos x sec2 x dx tan xtan x 1 1 du u1 When u 0, A 1. When u 1, 1 B ⇒ B 1. ln 1 sec x C 1 du uu 1 1 1 du u u1 ln u ln u 1 C ln u C u1 ln tan x C tan x 1 339 340 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 46. Let u ex, du ex dx. 1 A Bu C 2 u2 1u 1 u 1 u 1 1 Au2 1 Bu Cu 1 When u 1, A 12 . When u 0, 1 A C. 1 1 1 When u 1, 1 2A 2B 2C. Solving these equations we have A 2 , B 2 , C 2 , u e x, du e x dx. 48. e 2x ex dx 1e x 1 1 2 1 1 ln u 1 ln u2 1 arctan u C 2 2 1 2 ln e x 1 ln e 2x 1 2 arctan e x C 4 1 du u2 1u 1 u 1 1 du uu 11 du 2 1 A B a2 x2 a x a x 1 A C B 2 x2a bx x x a bx 50. 1 Axa bx Ba bx Cx 2 1 Aa x Ba x When x 0, 1 Ba ⇒ B 1a. When x ab, 1 Ca2b2 ⇒ C b2a2. When x 1, 1 a bA a bB C ⇒ When x a, A 12a. When x a, B 12a. 1 1 dx a2 x2 2a 1 1 dx ax ax 1 ln a x ln a x C 2a A ba 2. 1 dx x a bx 2 1 ax ln C 2a a x 52. dy 4 , y0 5 dx x2 2x 3 54. (a) 8 (b) −1 56. A 2 0 y 3 2 3 dx 14 0 2x 6 0 5 2 2 3 2 1 dx 16 x2 14 4 x ln 8 4x 7 ln 7 2.595 4 3 0 x (From Exercise 46) −3 −2 −1 1 b b ln x ln a bx C a2 ax a2 a bx b 1 ln C ax a2 x 1 x b ln C ax a2 a bx Nx A1 B1x An Bn x . . . Dx ax2 bx c ax2 bx cn −2 7 1 dx 16 x2 ba2 1a b2a2 2 dx x x a bx Nx A1 A2 Am . . . Dx px q px q2 px qm 3 3 1 2 3 Section 7.5 58. (a) Partial Fractions 341 (e) k 1, L 3 y 6 i y0 5: y 5 4 15 5 2e3t 1 32 3 ii y0 : y 2 12 52e3t 1 5e3t 3 2 1 5 t 1 2 3 4 5 6 (b) The slope is negative because the function is decreasing. (c) For y > 0, lim yt 3. 0 B A dy yL y y Ly (d) dy kyL y dt (f ) dy dy d 2y k y L y 0 dt 2 dt dt 1 1 1 AL y By ⇒ A , B L L dy yL y 1 L 1 dy y 5 0 t → ⇒ y k dt 1 dy Ly ⇒ L 2 From the first derivative test, this is a maximum. 1 ln y ln L y kt C1 L ln y k L t LC1 Ly C2ekLt When t 0, y Ly y y0 y0 C2 ⇒ ekLt. L y0 L y L y0 y0L . y0 L y0ekLt Solving for y, you obtain y 3 60. (a) V 0 2x 2 dx 4 2 x 1 3 0 3 4 0 x2 x2 dx 12 1 1 dx x2 1 x2 12 (partial fractions) 1 x arctan x 2 2 x 1 x x2 1 4 arctan x 2 arctan x —CONTINUED— dy dy L y dt dt y k dt 3 0 3 (trigonometric substitution) 0 2 arctan 3 3 5.963 10 342 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 60. —CONTINUED— 3 (b) A 0 x 1 A x2 3 0 2x2 1 dx 2 x 1 ln 10 2 ln 10 3 0 3 0 0 ln 10 3 2 0 3 1 2x 2 arctan x ln 10 1 1 y A 2 3 2x dx lnx2 1 1 0 y 2 2 dx x2 1 (1.521, 0.412) 1 2 3 arctan 3 1.521 ln 10 2 2x 2 dx x2 1 ln 10 (partial fractions) 1 x 2 arctan x arctan x 2 ln 10 2 x 1 2 1 x arctan x ln 10 2 2x2 1 3 0 3 x2 dx x2 12 1 1 dx x2 1 x2 12 2 −1 3 0 x 1 3 (trigonometric substitution) 0 1 x arctan x 2 ln 10 x 1 3 0 1 3 arctan 3 0.412 ln 10 10 x, y 1.521, 0.412 B 1 1 A 1 ,A ,B y0 xz0 x y0 x z0 x z0 y0 z0 y0 62. (a) 1 z0 y0 (Assume y0 z0) 1 1 dx kt C y0 x z0 x 1 z x ln 0 kt C, when t 0, x 0 z0 y0 y0 x C z 1 ln 0 z0 y0 y0 kt 1 z x z ln 0 ln 0 z0 y0 y0 x y0 y0z0 x z0 y0k t 0 0 x z y ln y0z0 x ez0 y0kt z0 y0 x x (b) (1) If y0 < z0, lim x y0. t → (2) If y0 > z0, lim x z0. t → y0z0ez0 y0kt 1 z0ez0 y0kt y0 (c) If y0 z0, then the original equation is 1 dx y0 x 2 k dt y0 x1 kt C1 x 0 when t 0 ⇒ 1 C1 y0 kt y0 1 1 1 kt y0 x y0 y0 y0 x y0 kt y0 1 x y0 y0 kt y0 1 As t → , x → y0 x0. Section 7.6 Section 7.6 Integration by Tables and Other Integration Techniques Integration by Tables and Other Integration Techniques 2. By Formula 13: b 2, a 5 2 2 1 4 1 5 4x x dx ln 3 x22x 52 3 25 x5 2x 5 2x 5 2 4x 5 x 8 ln C 375 2x 5 75 x2x 5 4. By Formula 29: a 3 C 6. By Formula 41: 1 1 x 9 x dx x2 9 arcsec C 3 x 3 3 2 8. By Formulas 51 and 47: cos3 x dx 2 x u x, du 10. By Formula 71: 1 1 dx 1 tan 5x 5 2 x 9 x 4 2 1 x dx x sin x 3 1 dx 2 x 1 1 u ln cos u sin u C 5 2 1 5x ln cos 5x sin 5x C 10 u 5x, du 5 dx 12. By Formula 85: a 21, b 2 ex2 sin 2x dx ex2 1 sin 2x 2 cos 2x C 14 4 2 4 x2 1 e sin 2x 2 cos 2x C 17 2 14. By Formulas 90 and 91: ln x3 dx xln x3 3 ln x2 dx xln x3 3x2 2 ln x ln x2 C xln x3 3ln x2 6 ln x 6 C 16. (a) By Formula 89: x 4 ln x dx x5 x5 1 5 x ln x C 2 1 4 1 ln x C 5 25 5 (b) Integration by parts: u ln x, du x 4 ln x dx x5 ln x 5 x5 1 dx, dv x 4 dx, v x 5 x5 1 x5 x5 dx ln x C 5 x 5 25 1 2x dx 2 32 x 22 1 x2 arcsin C 2 3 2 1 2 cos x dx sin x cos 2 x 2 C 3 3 2 x 1 5 dx 1 tan 5x dx cos3 x cos 2 343 344 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 18. (a) By Formula 24: a 75, x u, and (b) Partial fractions: 1 1 x 75 dx ln C x 2 75 2 75 x 75 3 30 ln A 1 B x 2 75 x 75 x 75 1 A x 75 B x 75 x 75 C x 75 x 75: 1 2A 75 ⇒ A 3 1 1 30 2 75 10 3 x 75: 1 2B 75 ⇒ B 1 dx x 2 75 20. By Formula 21: 22. By Formula 79: x 1 x 30 330 330 dx x 75 x 75 3 30 3 ln x 75 C x 75 2 dx 2 x 1 x C 3 arcsec 2x dx 1 2x arcsec 2x ln 2x 4x 2 1 C 2 u 2x, du 2 dx 24. By Formula 52: 26. By Formula 7: 28. By Formula 14: x sin x dx sin x x cos x C 1 sin 3 1 2 2x 2 dx arctan C arctanx 1 C x 2 2x 2 2 4 30. By Formula 56: 2 C x2 1 25 10 ln 3x 5 dx 3x 3x 52 27 3x 5 d 32. By Formula 71: 1 1 3 2 d 3 1 sin 3 1 dt t 1 ln t2 u ln t, du u e x, du e x dx 1 tan 3 sec 3 C 3 34. By Formula 23: ex 1 dx e x ln cos e x sin e x C 1 tan e x 2 1 1 dt arctanln t C 1 ln t2 t 1 dt t 36. By Formula 26: 1 x x 2 3 3 ln x x 2 3 C 2 38. By Formula 27: 1 3x2 2 2 3x2 3 dx 27 3 x 2 dx x 2 2 3x2 dx 1 3x18x 2 2 2 9x 2 4 ln 3x 2 9x 2 C 827 Section 7.6 40. By Formula 77: 2 3 x arctanx32 dx 42. By Formula 45: arctanx32 Integration by Tables and Other Integration Techniques 32 x dx 2 32 x arctanx32 ln 1 x3 C 3 ex ex dx C 2x 32 1 e 1 e 2x u e x, du e x dx 44. By Formula 27: 2x 32 2x 32 4 dx 1 2x 32 2x 3)2 42 dx 2 1 2x 32x 32 2 2x 32 4 ln 2x 3 2x 32 4 C 8 u 2x 3, du 2 dx 46. By Formula 31: cos x sin2 x 1 dx ln sin x sin2 x 1 C u sin x, du cos x dx 48. 3x dx 3x 3x 9 x 2 3 1 dx 9 x 2 3 arcsin 50. By Formula 67: dx un a bu du x 9 x 2 C 3 du a bu 2 , v a bu b a bu 2n n1 2u n a bu u a bu du b b a bu 2n au n1 bu n 2u n a bu du b b a bu 2u n 2na u n1 un a bu du 2n du b b a bu a bu 54. 2u n 2n n1 a bu u a bu du b b Therefore, 2n 1 tan3 d x dx 9 x 2 52. Integration by parts: w u n, dw nu n1 du, dv un a bu un a bu du 2 n un1 u a bu na du and b a bu 2 un1 un a bu na du . 2n 1b a bu uncos u du un sin u n un1sin u du w un, dv cos u du, dw nun1 du, v sin u tan2 2 tan d tan2 ln cos x C 2 345 346 56. Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals ln un du uln un nln un1 1uu du uln u w ln un, dv du, dw nln un1 58. x x 2 2x dx 0, 0: n n ln un1 du 1u du, v u 1 2x 2 2x32 3x 1 x 2 2x 3 ln x 1 x 2 2x C 6 15 1 3 ln 1 C 0 ⇒ C 0 6 −6 6 (0, 0) −15 60. 2 2x x 2 x1 0, 2 : dx 2 2x x2 3 ln 3 2 2x x 2 x1 3 (0, 2 ) C 2 3 ln 3 2 C 2 ⇒ C 3 ln 3 2 −2.5 1 −6 62. 0, 1: C 1 ⇒ y 64. sin 1 sin 1 sin d ln cos 1 sin 2 1 sin cos 1 sin 1 sin ln 2 1 sin cos C 10 1 sin sin d d 1 cos2 1 cos 2 −8 8 (0, 1) −2 2 66. 0 1 d 3 2 cos arctancos C 1 0 1 2 0 u tan 68. cos d 1 cos cos 1 cos d 1 cos 1 cos 70. 2 1 d sec tan 2u 1 u2 21 u2 3 1 u2 1 du 5u2 1 25 arctan 5 u 1 0 2 5 arctan 5 1 d 1cos sin cos cos cos2 d sin2 csc cot cot2 d ln 1 sin C csc cot csc2 1 d csc cot C cos d 1 sin u 1 sin , du cos d Section 7.6 2 72. A 0 1 2 0 1 2 2x dx 2 1 ex 1 4 2 1 2 2 x ln1 e x 2 1 1 4 ln1 e4 ln 2 2 2 347 y x 2 dx 1 ex 2 Integration by Tables and Other Integration Techniques x 1 2 0 0.337 square units 74. Log Rule: 1 du, u ex 1 u 78. Formula 16 with u e2x 76. Integration by parts 5 82. W 80. A reduction formula reduces an integral to the sum of a function and a simpler integral. For example, see Formula 50, 54. 0 500x 26 x 2 dx 5 250 26 x 2122x dx 0 500 26 x 2 500 26 1 2049.51 ft lbs 84. 2 1 20 0 2500 5000 dt 1 e4.81.9t 1.9 2 0 1.9 dt 1 e4.81.9t 2500 4.8 1.9t ln1 e4.81.9t 1.9 2500 1 ln1 e 4.8 ln1 e4.8 1.9 2500 1e 3.8 ln 1.9 1 e4.8 86. (a) 401.4 20 k 6x 2ex2 dx 50 0 By trial and error, k 5.51897. 0 5.51897 (b) 0 88. True 6x 2ex2 dx 2 −1 5.52 0 5 0 348 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals Section 7.7 Indeterminate Forms and L’Hôpital’s Rule 1 ex 1 x →0 x 2. lim 1 −1 0.1 0.01 0.001 0.001 0.01 0.1 0.9516 0.9950 0.9995 1.00005 1.005 1.0517 x f x 6x 4. lim x → 3x2 2x 3.4641 exact: 63 5 1 10 102 103 104 105 f x 6 3.5857 3.4757 3.4653 3.4642 3.4641 x →1 (b) lim x →1 8. (a) lim x →0 x → (b) lim x → 0 100 0 2x2 x 3 2x 3x 1 lim lim 2x 3 5 x →1 x →1 x1 x1 2x2 x 3 ddx2x2 x 3 4x 1 lim 5 lim x →1 x →1 x1 ddxx 1 1 sin 4x sin 4x lim 2 21 2 x →0 2x 4x 10. (a) lim −2 x 6. (a) lim (b) lim x →0 sin 4x 4 cos 4x ddxsin 4x lim lim 2 x →0 x →0 2x ddx2x 2 2x 1 2x 1x2 0 lim 0 2 x → 4x x 4 1x 4 2x 1 ddx2x 1 2 lim lim 0 4x2 x x → ddx4x2 x x → 8x 1 x2 x 2 2x 1 lim 3 x →1 x →1 x1 1 12. lim 14. lim x →2 4 x2 x2 lim x →2 lim x →2 16. lim x →0 ex 1 x ex 1 lim 3 x →0 x 3x2 lim x →0 ex 6x sin ax a cos ax a lim x→0 sin bx x→0 b cos bx b 20. lim x → x1 1 lim 0 x2 2x 3 x → 2x 2 x2 2x 2 lim x lim x 0 x→ ex x→ e x→ e 28. lim x4 x2 1 x 4 x2 2 18. lim ln x lim 2 ln x x→1 x2 1 x→1 x2 1 lim 2x 2x lim 1 1 x2 x→1 x→1 24. lim 1 arctan x 4 11 x2 1 lim x →1 x →1 x1 1 2 22. lim 26. lim x→ x3 3x2 lim x→ x1 1 Section 7.7 30. lim x→ x2 x lim x→ 1 1x2 1 Indeterminate Forms and L’Hôpital’s Rule 32. lim x2 x→ sin x 0 x Note: Use the Squeeze Theorem for x > . e x2 12e x2 lim x→ x x→ 1 ln x 4 4 ln x 4x lim lim x→ x3 x→ x→ 3x2 x3 36. lim 34. lim lim x→ 4 0 3x3 38. (a) lim x3 cot x 0 (b) lim x3 cot x lim (c) x→0 40. (a) lim x tan x→ x→0 x→0 1 sin x 1 ≤ ≤ x x x x3 tan x lim x→0 3x2 sec2 x 0 (b) lim x tan x→ 1 0 x 1 tan1x lim x x→ 1x 1 lim x→ 0 1x2 sec21x 1x2 3 lim sec2 x→ −1 (c) 1x 1 2 1 10 −1 42. (a) lim e x x2x 1 x→0 (b) Let y lim e x x2x. x→0 ln y lim x→0 2 ln ex x 1 1 (b) Let y lim 1 . x x→ 1 x x x x→ x ln y lim 2e x 1e x x lim 4 x→0 1 x→ x ln1 1x lim ln1 1x1x x→ 1 1x 1x2 Thus, ln y 4 ⇒ y e 4 54.598. (c) 44. (a) lim 1 lim x→ 60 1x2 lim x→ 1 1 1 1x Thus, ln y 1 ⇒ y e1 e. Therefore, lim 1 x→ 0 1 x x e. 2 0 (c) 5 0 −1 10 349 350 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 48. (a) lim 3x 4 x4 00 46. (a) lim 1 x1x 0 x → x→4 (b) Let y lim 3x 4 x4. (b) Let y lim 1 x 1x. x→ ln y lim x→ lim x→ x→4 ln y lim x 4ln3x 4 ln1 x x x→4 111 x 0 ln3x 4 1x 4 lim 1x 4 1x 42 x→4 x→4 Thus, ln y 0 ⇒ y e0 1. Therefore, lim 1 x1x 1. lim x 4 0 x → (c) lim x→4 Hence, lim 3x 4 x4 1. 5 x→4 (c) 2 10 0 −1 4 7 0 2 x x 50. (a) lim cos x→0 00 2 x . x (b) Let y lim cos x→0 x 1 4 x x41 1 x1 1 x1 lim lim x 4 x 4 x 4 52. (a) lim (b) x →2 2 x →2 2 2 2 x →2 2 x ln y lim x ln cos x→0 lim x →2 000 2 x x Hence, lim cos x→0 (c) lim x →2 1. (c) 2 1 2x 1 2x 1 4xx 1 0.25 2 4 2 − 0.25 0 3 0 54. (a) lim x→0 (b) lim x→0 10x x3 (c) 2 10x x3 lim 10xx 3 2 x→0 10 0 5 2 −20 56. (a) (b) Let y sin xx, then ln y x lnsin x. 2 − lim x →0 2 −1 lnsin x cos xsin x x2 2x lim lim lim 0 2 x →0 x →0 tan x x →0 sec2 x 1x 1x Therefore, since ln y 0, y 1 and lim sin xx 1. x →0 1 8 Section 7.7 58. (a) Indeterminate Forms and L’Hôpital’s Rule x3 3x2 6x 6 lim 2x lim 2x lim 2x 0 2x x→ e x→ 2e x→ 4e x→ 8e (b) lim 1 −1 5 −3 62. Let f x x 25 and gx x. 60. See Theorem 7.4. 64. lim x3 3x2 6x 6 lim lim 0 lim e2x x→ 2e2x x→ 4e2x x→ 8e2x 66. lim ln x2 2 ln xx lim x→ x3 3x2 x→ x→ x→ xm mxm1 lim enx x→ nenx mm 1xm2 n2enx lim 2 ln x 3x3 lim lim 2x 2 lim 3 0 x→ 9x 9x2 . . . lim x→ x→ 70. 68. lim x→ x→ m! 0 nmenx x 1 5 10 20 30 40 50 100 ex x5 2.718 0.047 0.220 151.614 4.40 105 2.30 109 1.66 1013 2.69 1033 ln x x Horizontal asymptote: y 0 (See Exercise 29) 74. y 72. y x x, x > 0 lim x x and lim x x 1 x→ x→0 dy x1x ln x1 1 ln x 0 dx x2 x2 No horizontal asymptotes ln y x ln x Critical number: 1 1 dy x ln x y dx x 0, e Sign of dydx: y f x: Increasing 1 Relative maximum: e, e dy x x1 ln x 0 dx e1, 0 Increasing 1 1 1 Relative minimum: e1, e1e , e e e, Decreasing x e1 Critical number: xe Intervals: 0, e1 Sign of dydx: y f x: Decreasing Intervals: 1 −1 4 (e, 1e ( 1e −4 4 ( −1 (( 1 1, 1 e e e ( 4 −1 sin x 1 0 x→ x 76. lim (Numerator is bounded) Limit is not of the form 00 or . L’Hôpital’s Rule does not apply. ex 0 0 x → 1 ex 10 78. lim Limit is not of the form 00 or . L’Hôpital’s Rule does not apply. 351 352 Chapter 7 80. A P 1 r n Integration Techniques, L’Hôpital’s Rule, and Improper Integrals nt r ln A ln P nt ln 1 ln P n lim n → ln 1 r n lim r n 1 nt 1 r n2 1 rn 1 2 nt n → 1 nt ln 1 lim n → rt 1 1 r n rt Since lim ln A ln P rt, we have lim A eln Prt eln Pert Pert. Alternatively, n→ r lim A lim P 1 n → n → n n→ nt 1 n lim P n → r nr rt Pert. 82. Let N be a fixed value for n. Then N 1x N2 N 1N 2x N3 N 1! x N1 lim lim . . . lim 0. x x x→ e x→ x→ x→ e ex ex lim 84. f x xk 1 k k 1, k=1 f x x 1 1 10x 0.1 1 0.1 x 0.1 f x k 0.01, x 0.01 1 100x 0.01 1 f x 0.01 k →0 (See Exercise 68) 6 k 0.1, lim k = 0.1 k = 0.01 −2 10 −2 xk 1 xk ln x lim ln x k →0 k 1 1 86. f x , gx x2 4, 1, 2 x fc f 2 f 1 g2 g1 gc 88. f x ln x, gx x3, 1, 4 f 4 f 1 fc g4 g1 gc 12 1c2 3 2c ln 4 1c 1 2 3 63 3c 3c 3c3 ln 4 63 1 1 3 6 2c c3 2c3 6 3 3 c 90. False. If y exx2, then y x2ex 2xex xex x 2 ex x 2 . x4 x4 x3 c 21 ln 4 ln214 2.474 3 92. False. Let f x x and gx x 1. Then lim x → x 1, but lim x x 1 1. x → x1 Section 7.8 e1x , 0, 94. gx 2 Improper Integrals x0 y x0 1.5 gx g0 e1x lim g0 lim x →0 x →0 x0 x 2 e1x e1x , then ln y ln Let y x x 2 2 0.5 1 1 x2 ln x 2 ln x . Since x x2 x −2 −1 1 2 − 0.5 ln x 1x x2 lim lim 0 lim x2 ln x lim 2 3 x →0 x →0 1x x →0 2x x →0 2 1 x x 2 we have lim x →0 ln x 2 . Thus, lim y e x →0 0 ⇒ g0 0. Note: The graph appears to support this conclusion—the tangent line is horizontal at 0, 0. 98. lim x ln 21ln x 96. lim f xgx x →0 x →a Let y x ln 21ln x, then: y f xgx ln y gx ln f x ln y lim gx ln f x ln 2 1 ln x x →a As x → a, ln y ⇒ , and hence y . Thus, lim ln y lim x →0 lim f xgx . x →0 ln 2ln x ln 2x lim x →0 1 ln x 1x x→0 Thus, lim y eln 2 2. x → Improper Integrals 2. Infinite discontinuity at x 3. 4 3 1 dx lim b →3 x 332 x 332 dx 2 b 3 4 b lim 2x 312 b →3 lim 2 b →3 4 b Diverges 4. Infinite discontinuity at x 1. 2 0 1 dx x 123 1 0 1 dx x 123 b lim b→1 0 b→1 2 1 1 dx x 123 1 dx lim c→1 x 123 3 x 1 lim 3 Converges ln 2ln x 1 ln x lim ln 2 ln 2 x →a Section 7.8 ln x b 0 2 c 1 dx x 123 3 x 1 lim 3 c→1 2 c 0 3 3 0 6 353 354 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 6. Infinite limit of integration. 0 8. 0 e2x dx lim b→ ex dx 0. You need to evaluate the limit. 0 lim b→ 0 1 2x e 2 lim b→ b b e2x dx b e ex dx lim b→ 0 1 1 0 2 2 lim b→ b x 0 e 1 1 b Converges 10. 5 1 b dx lim b→ x3 1 b→ xex2 dx lim x 1ex dx lim eax sin bx dx lim b→ 0 b→ 18. e x2 c→ 0 x 1ex dx lim xex b→ 0 ax e a sin bx b cos bx a2 b2 x2 0 x3 dx lim b→ 12 b 0 x2 b→ x dx lim b→ 1 1 lnx 2 lim 2 b 0 1 1 lim b 0 b→ 0 0 by L’Hôpital’s Rule. b e b 20. 1 ln x dx lim b→ x b→ b 0 1 2 1 x2 x x2 1 2 dx Diverges b→ lim 34 0 b b 0 2 a b2 a 2 b2 22. 163x lim eb22b 4 4 4 b c 4x14 dx 1 2x 4 b 0 b→ b→ xex2 dx lim b lim b b→ dx lim 5 2 1 0 16. b 4 4 x 1 2 14. 12. 25x lim 5 dx x3 24. 0 b 1 ln x dx x ln x2 2 b 1 Diverges b ex dx lim ln1 ex b→ 1 ex ln 2 0 b Diverges 0 1 2 Diverges 26. 6 30. x x b dx lim 2 cos b→ 2 2 0 0 x Diverges since cos does not approach a limit as x → . 2 sin 0 4 dx lim b→6 6 x 0 4 b 8 dx lim 8 ln x b→0 x 4 b 32. 0 b e ln x2 dx lim b→0 2 ln x dx 0 lim 2x ln x 2x b→0 0 e b 80 86 lim 2e 2e 2b ln b 2b 86 0 sec d lim Diverges e 46 x12 dx 8 dx lim b→0 x Diverges 0 2 34. 0 b lim 86 x12 b→6 4 28. b→ 2 b→0 lnsec tan b 0 2 , 36. 0 1 x dx lim arcsin b→2 2 4 x2 b 0 2 Section 7.8 2 38. 0 1 dx lim b→2 4 x2 b 0 1 1 1 1 2x dx lim ln b→2 4 2x 2x 4 2x Diverges 3 40. 1 2 2 dx x 283 b 0 Improper Integrals 355 0 3 2x 283 dx 1 2x 283 dx 2 b lim b→2 1 2x 283 dx 3 2x 283 dx lim c→2 6 lim x 253 b→2 5 b c 6 lim x 253 c→2 5 1 3 c Diverges 42. Thus, 1 1 dx x ln x 0 1 dx x ln x 1 lim lnln x b→1 44. If p 1, e e lim 1 1 1 dx ln ln x C x ln x c→ 1 dx lim ln x a→0 x a lim ln a . a→0 Diverges. If p 1, e 1 1 dx x ln x 0 lnln x . 1 x1p dx lim a→0 xp 1p 1 a lim a→0 1 1 p 1a p . 1p 1 if 1 p > 0 or p < 1. 1p This converges to e Diverges 1 46. (a) Assume gx dx L (converges). a Since 0 ≤ f x ≤ gx on a, , 0 ≤ f x dx ≤ a gx dx diverges, because otherwise, by part (a), if a 1 48. 0 3 x 56. f x dx converges. a gx dx converges, then so does dx f x dx. 1 3 converges. 1 13 2 1 1 ≥ on 2, and x x 1 a 50. x 4ex dx converges. 0 See Exercise 44, p 13 . (See Exercise 45.) 1 2 x 1 1 ≤ 32 on 1, and x x1 x 54. Since gx dx L and a 1 52. Since a (b) dx diverges by Exercise 43, 2 1 1 x32 1 x 1 dx diverges. dx converges by Exercise 43, 1 1 ≥ since x ln x < x on 2, . Since x x ln x 1 1 2 x 1 x1 x dx diverges by Exercise 43, 2 dx converges. 1 x ln x dx diverges. 58. See the definitions, pages 540, 543. 60. Answers will vary. (a) 1e Converges 62. f t t ex 2x dx (b) x dx (Example 4) Diverges Fs st 1e s test dt lim b→ 0 1 2 1 ,s > 0 s2 st b 0 356 Chapter 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 64. f t eat Fs 66. f t sin at eat est dt 0 etas dt 0 1 e as b t as 0 1 1 ,s > a as sa 68. f t sinh at est sinh at dt 0 est sin at dt b→ 2 est s sin at a cos at a2 a a ,s > 0 s2 a2 s2 a2 eat 1 dt 2 2 at s 0 et sa et sa dt 0 b 1 1 1 et sa et sa b→ 2 s a s a lim 0 e est 0 lim 0 lim b→ Fs Fs 0 0 1 1 1 2 s a s a 1 1 a 1 2 ,s > a 2 s a s a s a2 70. (a) A 1 1 1 dx x2 x 1 1 (b) Disk: V 1 (c) Shell: V 2 1 x x1 dx lim 2 ln x b 2 b→ 1 1 dx lim 3 b→ x4 3x b 1 Diverges 72. x 22 y2 1 2x 2 2yy 0 y x 2 y 1 y 2 1 3 S 4 1 x dx 4 y x 2 2y 2 3 1 1 (Assume y > 0. y x dx 4 1 x 22 3 1 74. (a) Fx W (b) 2 1 x 22 dx 4 0 2 arcsin1 2 arcsin1 8 lim 4 1 x 22 2 arcsinx 2 a→1 b→3 x2 1 x 22 b a K K ,5 , K 80,000,000 x2 40002 80,000,000 80,000,000 dx lim b→ x2 x 4000 80,000,000 W 10,000 2 x b 4000 80,000,000 10,000 b b 8000 Therefore, 4000 miles above the earth’s surface. b 4000 20,000 mi-ton 80,000,000 20,000 b 2 3 b 0 Section 7.8 76. (a) 2 2t5 e dt 5 4 (b) 0 0 b 2 2t5 e dt lim e2t5 1 b→ 5 0 4 2 2t5 e dt e2t5 5 0 e85 1 0.7981 79.81% (c) Improper Integrals 25 e dt lim te 2t5 t 0 2t5 b→ 5 e2t5 2 b 0 5 2 5 78. (a) C 650,000 25,0001 0.08te0.06t dt 0 650,000 25,000 $778,512.58 $905,718.14 1 0.06t t 0.06t 1 e 0.08 e e0.06t 0.06 0.06 0.062 5 0 10 (b) C 650,000 25,0001 0.08te0.06t dt 0 650,000 25,000 (c) C 650,000 1 0.06t t 0.06t 1 e e 0.08 e0.06t 0.06 0.06 0.062 10 0 25,0001 0.08te0.06t dt 0 t e 0.06 650,000 25,000 lim 0.06t b→ 80. (a) 1 1 xn 1 1 e0.06t 0.062 b 0 $1,622,222.22 (b) It would appear to converge. y 1 1.00 dx will converge if n > 1 and will diverge if n ≤ 1. 0.50 0.25 u 1 0.06t 0.75 (c) Let dv sin x dx ⇒ b t e 0.06 1 1 1 dx lim b→ x2 x 1 1 b 1 dx lim ln x b→ x 0.08 1 x v cos x ⇒ du sin x cos x dx lim b→0 x x cos 1 1 b 1 x −5 − 0.25 1 dx x2 1 15 20 cos x dx x2 cos x dx x2 Converges 82. (a) Yes, the integral is not defined at x 2. (b) 5 (c) As n → , the integral approaches 4 4 . (d) In 2 0 4 dx 1 tan xn I2 3.14159 I4 3.14159 I8 3.14159 I12 3.14159 0 −2 2 357 358 Chapter 7 84. (a) f x Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 1 2 ex70 18 32 (b) P72 ≤ x < 0.2525 (c) 0.5 P70 ≤ x ≤ 72 0.5 0.2475 0.2525 90 f x dx 1.0 These are the same answers because by symmetry, 50 P70 ≤ x < 0.4 0.5 and 50 0.5 P70 ≤ x < 90 P70 ≤ x ≤ 72 P72 ≤ x < − 0.2 86. False. This is equivalent to Exercise 85. . 88. True Review Exercises for Chapter 7 2. 2 xe x1 dx 2 1 x1 e 2x dx 2 4. x 1 dx 1 x2122x dx 2 1 x 2 1 2 e x1 C 2 1 1 x212 C 2 12 1 x2 C 6. u4 3u2 du 2x2x 3 dx 10. 8. x x 4 2x2 x 1 1 2 x 4 2x2 1 x 12 22x 332 x 1 C 5 u 2x 3, x u5 u3 C 5 x4 2x2 x 1 dx x2 12 u2 3 , dx u du 2 dx x 1 2 2x dx x2 12 1 C 2x2 1 x2 1ex dx x2 1ex 2 xex dx x2 1ex 2xex 2 ex dx exx2 2x 1 1 (1) dv ex dx ⇒ v ex u x2 1 ⇒ du 2x dx (2) dv ex dx ⇒ ux ⇒ du dx 12. u arctan 2x, du v ex 2 dx, dv dx,v x 1 4x2 arctan 2x dx x arctan 2x x arctan 2x 14. lnx2 1 dx 2x dx 1 4x2 1 ln1 4x2 C 4 1 2 lnx2 1 dx 1 x ln x2 1 2 1 x ln x2 1 2 x2 x2 dx 1 dx 1 dx x2 1 1 x1 1 C x ln x2 1 x ln 2 2 x1 dv dx ⇒ vx u lnx2 1 ⇒ du 2x dx x2 1 Review Exercises for Chapter 7 16. ex arctanex dx ex arctanex ex arctanex ⇒ dv ex dx 20. x dx 2 sin2 ex dx 1 e2x or tan sec4 d 22. tan3 tan sec2 d sec3 sec tan d cos 2sin cos 2 d x2 9 x dx 24. 1 ln1 e2x C 2 1 1 1 1 1 cos x dx x sin x C x sin x C 2 2 2 tan sec4 d e2x dx 1 e2x v ex u arctan ex ⇒ du 18. 359 1 4 1 tan tan2 C1 4 2 1 sec4 C2 4 cos 2 sin2 sin cos 2 d 1 sin cos 3cos sin d sin cos4 C 4 3 tan 3 sec tan d 3 sec x 3 tan2 d x2 − 9 θ 3 3 sec2 1 d 3tan C x2 9 3 arcsec 3x C x 3 sec , dx 3 sec tan d, x2 9 3 tan 26. 9 4x2 dx 1 9 2x2 2 dx 2 2 9 arcsin 1 2 9 2x x arcsin 9 4x2 C 4 3 2 1 28. 2x 2x9 4x2 C 3 sin 1 d 1 2 cos2 2 1 2 1 2 sin d 1 2 cos2 arctan 2 cos C u 2 cos , du 2 sin d 360 Chapter 7 30. (a) Integration Techniques, L’Hôpital’s Rule, and Improper Integrals x4 x dx 64 tan3 sec3 d (b) x4 x dx 2 u4 4u2 du 64 sec4 sec2 sec tan d 64 sec3 3 sec3 5 C 15 24 x32 3x 8 C 15 2u3 2 3u 20 C 15 24 x32 3x 8 C 15 u2 4 x, dx 2u du x 4 tan2 , dx 8 tan sec2 d, 4 x 2 sec (c) x4 x dx u32 4u12 du (d) x4 x dx 4 x32 dx 2u32 3u 20 C 15 4 2x 4 x32 4 x52 C 3 15 24 x32 3x 8 C 15 24 x32 3x 8 C 15 dv 4 x dx ⇒ 2 v 4 x32 3 ⇒ du dx ux 2x3 5x2 4x 4 4 3 2x 3 x2 x x x1 32. 34. u 4 x, du dx 2x 2 4 x32 3 3 2x3 5x2 4x 4 dx x2 x 2x 3 3 4 dx x2 3x 4 ln x 3 ln x 1 C x x1 4x 2 A B 3x 12 x 1 x 12 4x 2 3Ax 1 3B Let x 1: 2 3B ⇒ B 2 3 Let x 2: 6 3A 3B ⇒ A 36. 4x 2 4 dx 3x 12 3 sec2 d tan tan 1 4 3 2 1 dx x1 3 1 du uu 1 1 du u1 ln u 1 ln u C ln u tan , du sec2 d 1 A B uu 1 u u1 1 Au 1 Bu Let u 0: 1 A ⇒ A 1 Let u 1: 1 B 4 1 2 2 1 dx lnx 1 C 2 lnx 1 C x 12 3 3x 1 3 x1 1 du u tan 1 C ln 1 cot C tan Review Exercises for Chapter 7 38. x 2 3x dx 24 3x 2 3x C (Formula 21) 27 40. x 1 1 dx 2 dx 1 ex 2 1 eu 6x 8 2 3x C 27 u x2 1 u ln1 eu C 2 (Formula 84) 1 2 x2 ln1 e x C 2 42. 3 3 1 dx 3 dx 2 3x3x2 1 2x9x2 1 44. (Formula 33) tann x dx 50. u 3x 1 1 1 dx dx 1 tan x 1 tan x 46. 3 arcsec 3x C 2 u x 11 x lncos x sin x C (Formula 71) 2 tann2xsec2 x 1 dx tann2 x sec2 x dx 1 tann1 x n1 1 x dx 48. 4u4 4u2 du 4u5 4u3 4 C 1 x 323x 2 C 5 3 15 u 1 x, x u4 2u2 1, dx 4u3 4u du 52. 3x3 4x Cx D Ax B 2 2 x2 12 x 1 x 12 3x3 4x Ax Bx2 1 Cx D Ax3 Bx2 A Cx B D A 3, B 0, A C 4 ⇒ C 1, BD0 ⇒ D0 3x3 4x x dx dx 3 2 x2 12 x 1 54. x dx x2 12 3 1 lnx2 1 C 2 2x2 1 sin cos 2 d sin2 2 sin cos cos2 d 1 sin 2 d 1 dx u 2x, du 2x tann2 x dx u4u3 4u du csc2x 1 dx 2 csc2x dx x 2x 2 ln csc2x cot2x C tann2 x dx 1 1 cos 2 C 2 cos 2 C 2 2 361 362 Chapter 7 56. y 4 x2 2x Integration Techniques, L’Hôpital’s Rule, and Improper Integrals dx 2 cos 2 cos d 4 sin csc sin d ln csc cos cos C ln 4 x2 2 4 x2 C x 2 x 2 sin , dx 2 cos d, 4 x 2 2 cos 1 cos d 58. y sin 1 cos d 1 cos 12sin d 21 cos C u 1 cos, du sin d 1 60. x x 2x 4 0 2 0 dx 2 ln x 4 ln x 2 1 62. xe3x dx 0 e9 3x 1 2 3x 0 1 5e6 1 224.238 9 2 ln 3 2 ln 4 ln 2 ln 3 64. 0 9 0.118 8 x 22 x 1 x dx 3 1 x 3 0 4 4 8 3 3 3 1 dx 25 x2 1 x5 ln 10 x 5 4 66. A 0 68. By symmetry, y 0. A 4 5 1 44 x 4 17 3.4 5 70. s y 4 0 1 1 1 ln ln 9 0.220 10 9 10 1 sin2 2x dx 3.82 0 3 2 1 (3.4, 0) x −1 1 3 4 5 −2 −3 x, y 3.4, 0 72. lim x →0 76. sin x cos x 1 lim sin 2 x x →0 2 cos 2 x 2 2 74. lim xex lim 2 x → x → y lim x 1ln x x →1 ln y lim ln x lnx 1 x →1 lim x →1 lnx 1 lim x →1 1 ln x lim 2xln x 0 x →1 Since ln y 0, y 1. 1 1 2 ln x x1 ln2 x x lim lim x →1 x →1 1 1 x1 1 x ln2 x x x2 x 1 2 lim 2 0 x → 2xe x ex
© Copyright 2025 Paperzz