EXERCISE IDEAL OP AMP ANALYSIS

EXERCISE
IDEAL OP AMP ANALYSIS
EXERCISE
No.1
IDEAL OP AMP ANALYSIS
Assuming ideal op amps, determine Vo for each and every circuit shown below.
A)
B)
1,8k
30k
-2V
Vo
1k
+0,1V
Vo
10k
2k
1k
C)
D)
2k
2K
-0,5V
10K
+1V
Vo
3k
2K
Vo
-1,5V
10k
2k
24k
10K
F)
E)
+15V
3.9K
10k
14k
5,1k
-2V
15k
1,5k
+5V
Vo
3k
Vo
+8V
16k
2k
15k
-15V
Ideal Op Amp Exercise
Rev. 1/6/2003
C. Sauriol
Page 1
EXERCISE
No.2
IDEAL OP AMP ANALYSIS
Assume typical op amp data for circuits A through E and worst case values for circuit F.
Op amp parameters for VSUP=±15V
O/P voltage swing
I/P voltage range
Short circuit current
A)
Determine V
minimum
±12V
±11V
±12 mA
.
typical
±13,5V
±12,5V
±20 mA
D)
x
4,7k
maximum
-
Determine V o.
10k
1K
2k
+6V
Vx
+1 6 V
3,3k
- 8V
1,8k
- 1V
+2 V
680
Vo
200
- 16V
B)
E)
Determine V o for V in =+6V and V in =-6V.
10k
Determine V o.
10K
30K
+5V
20k
+1 2V
+1 6V
6,8k
Vo
Vo
6,8k
Vi n
10K
- 12V
- 16V
C)
F)
Determine V o.
Determine the maximum value of R3
if we do not
want to saturate the inputs of the op amp given that V1
and V2 range from 80V to100V .
+1 5V
10k
100k
V1
+2 V
+16V
Vo
R3
+3 V
10k
Vo
V2
- 15V
R3
100K
- 16V
Ideal Op Amp Exercise
Rev. 1/6/2003
C. Sauriol
Page 2
EXERCISE
IDEAL OP AMP ANALYSIS
No.3
100k
t2
( )∫ V
∆Vo (PP) = Vo (t2 ) − Vo (t1 ) = −
Vin (ave) = Vin+
1
RE C F
( )+ V ( )
PW
T
− SW
in
T
A)
Draw
the
output
waveform with respect to Vin
shown for frequencies of 50
Hz, 100 Hz, 1 kHz and 10 kHz
- label waveforms with AC and
DC values as well as PW and
SW.
in (AC )
dt
t1
if
ω
0, 1 µF
10k
10
〉
RF CF
Vi n
for a squarewave
Vo
+1V
Vin
-1V
0,6T
0,4T
B)
1 Vpp
If Vin is a 2 Vpp squarewave with a 50% duty cycle, calculate the frequency of Vin that will produce Vo =
C)
Repeat step B for 75% duty cycle.
D)
If Vin is a 10 Vpp triangular wave with a frequency of 5 kHz, draw the expected O/P waveform with
respect to Vin.
No.4 A) Determine the output waveform
relative to an input triangular wave with a
10 VPP amplitude and a frequency of 250
Hz.
0,1 µF
10k
100
Vin
B)
Determine the output waveform
relative to an input square wave with a 2
VPP amplitude and a frequency of 250 Hz.
Vo = −RF CE
C)
What is the function of the 100Ω
resistor?
if
PHASE SHIFTER
AVF =
P1 + jX C
P1 − jX C
/ AVF = 2arctan
Vo
ω 〈 R0,1C
E
No.5
dVin
dt
E
R1
R1
AVF = 1
XC
P1
C
Vo
Design the circuit in order to
o
obtain a phaseshift of 20 to
o
180 with a 100K pot (P1) at a
frequency of 1 kHz.
Ideal Op Amp Exercise
Vin
Rev. 1/6/2003
P1
C. Sauriol
Page 3
EXERCISE
IDEAL OP AMP ANALYSIS
SOLUTIONS
- 2V
No.1 A )
B)
0A 1, 8k
0 , 1 mA
- 2V
0V
Vo
- 2V
2V
+
+ 3V -
0 , 1 mA
- 12V
0A
1k
0A
+0 , 1 V
+ 10V -
Vo
1 mA 10k
2k
- 3V
0A
1k
0V
1 mA
C)
D)
- 0, 5V
0A
30k
2k
1, 125
2K
mA
- 4, 125V
- 0, 5V
0A
3k
+ 2, 5V -
Vo
1, 125V
+
0 , 3 7 5 mA
+1 V
- 3V
- 1, 5V
- 0, 5V
0, 25
mA
10k
2k
- 1, 25V
1, 125
mA 10K
+ 2, 25V -
+ 11, 25V 0A
2K
Vo
- 12, 5V
0 , 1 2 5 mA
0A
0 , 1 2 5 mA
24k
10K
- 1, 25V
0 , 2 5 mA
0 , 1 2 5 mA
+1 5 V
E)
14k
1 mA
+
14V
-
F)
+1 V
15k
10k
0 , 1 3 3 mA
1 , 2 mA
16k
1, 066
mA
1,5k
+ 1, 8V -
Vo
0A
+
16V
-
+2 , 3 3 3 V
0 , 1 3 3 mA
1 , 2 mA
+3 , 2 V
0A
Vo
3k
+3 , 8 8 V
0A
2k
+3 , 2 V
- 15V
Rev. 1/6/2003
0 , 1 3 3 3 mA
+8 V
1 , 6 mA
15k
Ideal Op Amp Exercise
5,1k
+5 V
+1 V
1 mA
- 0, 68V +
- 2V
- 1, 333V +
0A
0, 933
mA
1, 333
mA
- 5, 2V +
3.9K
C. Sauriol
Page 4
EXERCISE
IDEAL OP AMP ANALYSIS
No.2 A)
4,7k
1, 489
mA
- 1V 0, 7
mA
10k
+6 V
+ 7V -
+2 V
0 , 7 8 9 mA
Vo
3,3k
Vx
+3 V
0A
- 2 .6 V +
- 3 .6 V
+1 5 V
C)
- 1 3 .5 V
0A
+3 V
1,8k
- 1V
- 8V
0A
- 1V
B)
- 15V
No feedback, the output saturates with
a polarity determined by the sign of the
differential I/P voltage:
Vo = A d (V + -V - ) = (2-3) = V o = -V sat = -13,5V
- 4, 833V
10k
+
20k
-
+1 6 V
0, 483
mA
0A
Vo
6,8k
Vi n
- 14, 5V
+6 V
0A
V+ and verify the sign of the differential
I/P voltage in order to validate your
assumption of V o = -V sat , that is:
+6 V
- 16V
Vo = A d (V + -V - ) = (-4,83-6) = therefore the assumption was valid.
+4 , 8 3 3 V
10k
-
20k
+
+1 6 V
0A
0, 483
mA
Vo
6,8k
Vi n
- 6V
Positive feedback will make the output
saturate with a polarity determined by
the sign of the differential I/P voltage.
With +6V applied to the -ve I/P of the
op amp, the O/P should be of the opposite
polarity, therefore
assume
V o = -V sat = -14,5V
and determine the
+1 4 , 5 V
0A
Same procedure here, except now V - is
negative, therefore the O/P polarity is
expected to be positive:
V o = +V sat = +14,5V
Verify assumption with sign of V
Vo = A d (V + -V - ) =
- 6V
d = (V
+ -V - )
(+4,83-(-6)) = +
- 16V
Ideal Op Amp Exercise
Rev. 1/6/2003
C. Sauriol
Page 5
EXERCISE
2 D)
2
mA
IDEAL OP AMP ANALYSIS
+2 V
1K
2
mA
1, 25
mA 1K
2k
Vo
+6 V
+1 6 V - 4 V +
0A
+1 , 2 5 V 1 , 2 5
mA
32
mA
Vo
2k
+3 , 7 5 V
+1 6 V
0A
2 mA
680
20
mA
1 , 2 5 mA
680
+2 V
+
6V
-
0A
+2 V
- 16V
3 0 mA
+2 V
1 8 , 7 5 mA
+
3, 75V
-
0A
200
+2 V
- 16V
200
Output of op amp has reached current limit,
notice that V - V + and -ve feedback is
- = V+
rendered ineffective not forcing V
E)
0, 5
mA
1, 125V
0, 5
0 V mA
10K
+ 15V Vo
+5 V
- 15V
+1 2 V 30k
0A
0A
0, 3875
mA 10K
0, 3875
mA +
Vo
+5 V
+1 2 V
+ 3, 875V -
- 10, 5
30k
0A
0, 5
mA
6,8k
0A
0, 5
mA
6,8k
1 , 5 mA
15V
+
0V
- 12V
1 , 0 5 mA
10K
0V
- 12V
10, 5V
+
Output of op amp has reached saturation,
notice that V - V + and -ve feedback is
Impossible voltage, therefore
Vo = -V sat = -10,5V typical.
rendered ineffective not forcing V
F)
10k
R3
100V
max
10k
8, 8
mA
R3
V- or V + max = 16 - 4 = 12V
R3 < 12V/8,68 mA = 1382
+1 6 V
0A
R3 should be less than 1382
1 2 V max 0 A
8 , 6 8 mA
Ideal Op Amp Exercise
- = V+
100k
V1
V2
10K
Vo
in order to keep V - and V+ inside a safe range of ±12V.
0, 12
mA
100K
- 16V
Rev. 1/6/2003
C. Sauriol
Page 6
EXERCISE
IDEAL OP AMP ANALYSIS
No.3
If
F〉
10
10
=
= 159 Hz then ∆V o (PP) = −
2π RF CF 2 π 100k × 0,1µ
A)
t2
( )∫ V
1
RE C F
dt
in ( AC)
t1
+1V
V (ave) = V
( )+ V ( )
+ PW
T
AREA
− SW
T
Vin
+0,2V
DC
AREA
Vin(DC) = +0,2V
-1V
t2
0, 6T
∆Vo ( PP ) = −1000∫ Vin ( AC ) dt
0, 4T
t1
∆Vo ( PP ) = −1000 × area
Vout
∆Vo ( PP ) = −1000 × 0.8 × 0.6T
Integral does not apply for 50
Hz and 100 Hz.
-2V DC
∆Vout = 0,48Vpp at 1 kHz
and
B)
I
N
P 2 V pp
U
T
t2
∆Vo ( PP ) = −1000∫ Vin ( AC ) dt
t1
∆Vo ( PP ) = −1000 × area
= 1000 ×
T
1000
× 1VP =
= 1VPP
2
2F
O
U
T
P
U
T
F = 500 Hz
F > 159 Hz integral OK.
48 mVpp at 10 kHz
AREA
DC level
AREA
T
2
1 V pp
DC level
C)
+1V
t2
I
N
P
U
T
∆Vo ( PP ) = −1000∫ Vin ( AC ) dt
t1
∆Vo ( PP ) = −1000 × area =
3T  375

1000 ×  0,5 ×  =
= 1VPP
4  F

F = 375Hz
F > 159 Hz integral OK.
Ideal Op Amp Exercise
AREA
2 V pp
3T
4
A
R
E
A
DC level
-1V
O
/
P
DC level
1 V pp
V (ave) = V +
Rev. 1/6/2003
( )+ V ( )
PW
T
− SW
T
Vin(DC) = +0,5V
C. Sauriol
Page 7
EXERCISE
IDEAL OP AMP ANALYSIS
No.3 D)
100 µs
t2
∆Vo ( PP) = −1000 ∫ Vin (AC ) dt
t1
∆Vo ( PP) = −1000 × area
= 1000 × 

100 µ × 5 

2
∆Vo ( PP) = 0,25VPP
O/P is a parabolic wave, not a
sine wave.
I
N
P 10
U VPP
T
DC level
O
U
T 0.25
P VPP
U
T
DC level
No.4 A)
+5V p
V o = − RF CE
dVin
dt
 10V 
V o = −10K × 0,1µ ±
 2ms 
10 V pp
-5V p
+5V p
O 10 V
pp
/
P
V o = m5V P
B)
I
N
P
U
T
On edges we have:
V o = − 10K × 0,1µ( ±∞ )
V o = m∞ ⇒ m V sat
On flat portions we have:
V o = −10K × 0,1µ( ±0 )
Vo = 0
The O/P spikes settle down
2
ms
-5V p
+1V p
I
N
P
U
T
O
U
T
P
U
T
2
ms
-1Vp
+ V sat
50 µs
0V
50 µs
- V sat
in 5τ = 5RE CE = 50 µs
C)
To stabilise negative feedback in order to avoid self oscillations from the circuit.
No. 5
Phase shifter
X 
P1 = 0 Φ = 2 × ATAN  C  = 180 o
 0 
X 
X
1
⇒ 10 o = ATAN  C  ⇒ TAN 10 o = C =
P1
2π FCP1
 P1 
X 
Φ = 20 o = 2 × ATAN  C 
 P1 
1
1
P1 =
=
= 9.026 nF
o
2π FC × TAN 10
2π 1000 ×100k × TAN 10 o
( )
( )
( )
⇒ 9.1 nF
std
The +ve input sees 0 to 100k DC wise, average of 50k, and the –ve input sees R1IIR1 = R1/2 = 50k
R1 = 100K. This means that O/P DC offset will not be minimized for all P1 settings.
Ideal Op Amp Exercise
Rev. 1/6/2003
C. Sauriol
Page 8