EXERCISE IDEAL OP AMP ANALYSIS EXERCISE No.1 IDEAL OP AMP ANALYSIS Assuming ideal op amps, determine Vo for each and every circuit shown below. A) B) 1,8k 30k -2V Vo 1k +0,1V Vo 10k 2k 1k C) D) 2k 2K -0,5V 10K +1V Vo 3k 2K Vo -1,5V 10k 2k 24k 10K F) E) +15V 3.9K 10k 14k 5,1k -2V 15k 1,5k +5V Vo 3k Vo +8V 16k 2k 15k -15V Ideal Op Amp Exercise Rev. 1/6/2003 C. Sauriol Page 1 EXERCISE No.2 IDEAL OP AMP ANALYSIS Assume typical op amp data for circuits A through E and worst case values for circuit F. Op amp parameters for VSUP=±15V O/P voltage swing I/P voltage range Short circuit current A) Determine V minimum ±12V ±11V ±12 mA . typical ±13,5V ±12,5V ±20 mA D) x 4,7k maximum - Determine V o. 10k 1K 2k +6V Vx +1 6 V 3,3k - 8V 1,8k - 1V +2 V 680 Vo 200 - 16V B) E) Determine V o for V in =+6V and V in =-6V. 10k Determine V o. 10K 30K +5V 20k +1 2V +1 6V 6,8k Vo Vo 6,8k Vi n 10K - 12V - 16V C) F) Determine V o. Determine the maximum value of R3 if we do not want to saturate the inputs of the op amp given that V1 and V2 range from 80V to100V . +1 5V 10k 100k V1 +2 V +16V Vo R3 +3 V 10k Vo V2 - 15V R3 100K - 16V Ideal Op Amp Exercise Rev. 1/6/2003 C. Sauriol Page 2 EXERCISE IDEAL OP AMP ANALYSIS No.3 100k t2 ( )∫ V ∆Vo (PP) = Vo (t2 ) − Vo (t1 ) = − Vin (ave) = Vin+ 1 RE C F ( )+ V ( ) PW T − SW in T A) Draw the output waveform with respect to Vin shown for frequencies of 50 Hz, 100 Hz, 1 kHz and 10 kHz - label waveforms with AC and DC values as well as PW and SW. in (AC ) dt t1 if ω 0, 1 µF 10k 10 〉 RF CF Vi n for a squarewave Vo +1V Vin -1V 0,6T 0,4T B) 1 Vpp If Vin is a 2 Vpp squarewave with a 50% duty cycle, calculate the frequency of Vin that will produce Vo = C) Repeat step B for 75% duty cycle. D) If Vin is a 10 Vpp triangular wave with a frequency of 5 kHz, draw the expected O/P waveform with respect to Vin. No.4 A) Determine the output waveform relative to an input triangular wave with a 10 VPP amplitude and a frequency of 250 Hz. 0,1 µF 10k 100 Vin B) Determine the output waveform relative to an input square wave with a 2 VPP amplitude and a frequency of 250 Hz. Vo = −RF CE C) What is the function of the 100Ω resistor? if PHASE SHIFTER AVF = P1 + jX C P1 − jX C / AVF = 2arctan Vo ω 〈 R0,1C E No.5 dVin dt E R1 R1 AVF = 1 XC P1 C Vo Design the circuit in order to o obtain a phaseshift of 20 to o 180 with a 100K pot (P1) at a frequency of 1 kHz. Ideal Op Amp Exercise Vin Rev. 1/6/2003 P1 C. Sauriol Page 3 EXERCISE IDEAL OP AMP ANALYSIS SOLUTIONS - 2V No.1 A ) B) 0A 1, 8k 0 , 1 mA - 2V 0V Vo - 2V 2V + + 3V - 0 , 1 mA - 12V 0A 1k 0A +0 , 1 V + 10V - Vo 1 mA 10k 2k - 3V 0A 1k 0V 1 mA C) D) - 0, 5V 0A 30k 2k 1, 125 2K mA - 4, 125V - 0, 5V 0A 3k + 2, 5V - Vo 1, 125V + 0 , 3 7 5 mA +1 V - 3V - 1, 5V - 0, 5V 0, 25 mA 10k 2k - 1, 25V 1, 125 mA 10K + 2, 25V - + 11, 25V 0A 2K Vo - 12, 5V 0 , 1 2 5 mA 0A 0 , 1 2 5 mA 24k 10K - 1, 25V 0 , 2 5 mA 0 , 1 2 5 mA +1 5 V E) 14k 1 mA + 14V - F) +1 V 15k 10k 0 , 1 3 3 mA 1 , 2 mA 16k 1, 066 mA 1,5k + 1, 8V - Vo 0A + 16V - +2 , 3 3 3 V 0 , 1 3 3 mA 1 , 2 mA +3 , 2 V 0A Vo 3k +3 , 8 8 V 0A 2k +3 , 2 V - 15V Rev. 1/6/2003 0 , 1 3 3 3 mA +8 V 1 , 6 mA 15k Ideal Op Amp Exercise 5,1k +5 V +1 V 1 mA - 0, 68V + - 2V - 1, 333V + 0A 0, 933 mA 1, 333 mA - 5, 2V + 3.9K C. Sauriol Page 4 EXERCISE IDEAL OP AMP ANALYSIS No.2 A) 4,7k 1, 489 mA - 1V 0, 7 mA 10k +6 V + 7V - +2 V 0 , 7 8 9 mA Vo 3,3k Vx +3 V 0A - 2 .6 V + - 3 .6 V +1 5 V C) - 1 3 .5 V 0A +3 V 1,8k - 1V - 8V 0A - 1V B) - 15V No feedback, the output saturates with a polarity determined by the sign of the differential I/P voltage: Vo = A d (V + -V - ) = (2-3) = V o = -V sat = -13,5V - 4, 833V 10k + 20k - +1 6 V 0, 483 mA 0A Vo 6,8k Vi n - 14, 5V +6 V 0A V+ and verify the sign of the differential I/P voltage in order to validate your assumption of V o = -V sat , that is: +6 V - 16V Vo = A d (V + -V - ) = (-4,83-6) = therefore the assumption was valid. +4 , 8 3 3 V 10k - 20k + +1 6 V 0A 0, 483 mA Vo 6,8k Vi n - 6V Positive feedback will make the output saturate with a polarity determined by the sign of the differential I/P voltage. With +6V applied to the -ve I/P of the op amp, the O/P should be of the opposite polarity, therefore assume V o = -V sat = -14,5V and determine the +1 4 , 5 V 0A Same procedure here, except now V - is negative, therefore the O/P polarity is expected to be positive: V o = +V sat = +14,5V Verify assumption with sign of V Vo = A d (V + -V - ) = - 6V d = (V + -V - ) (+4,83-(-6)) = + - 16V Ideal Op Amp Exercise Rev. 1/6/2003 C. Sauriol Page 5 EXERCISE 2 D) 2 mA IDEAL OP AMP ANALYSIS +2 V 1K 2 mA 1, 25 mA 1K 2k Vo +6 V +1 6 V - 4 V + 0A +1 , 2 5 V 1 , 2 5 mA 32 mA Vo 2k +3 , 7 5 V +1 6 V 0A 2 mA 680 20 mA 1 , 2 5 mA 680 +2 V + 6V - 0A +2 V - 16V 3 0 mA +2 V 1 8 , 7 5 mA + 3, 75V - 0A 200 +2 V - 16V 200 Output of op amp has reached current limit, notice that V - V + and -ve feedback is - = V+ rendered ineffective not forcing V E) 0, 5 mA 1, 125V 0, 5 0 V mA 10K + 15V Vo +5 V - 15V +1 2 V 30k 0A 0A 0, 3875 mA 10K 0, 3875 mA + Vo +5 V +1 2 V + 3, 875V - - 10, 5 30k 0A 0, 5 mA 6,8k 0A 0, 5 mA 6,8k 1 , 5 mA 15V + 0V - 12V 1 , 0 5 mA 10K 0V - 12V 10, 5V + Output of op amp has reached saturation, notice that V - V + and -ve feedback is Impossible voltage, therefore Vo = -V sat = -10,5V typical. rendered ineffective not forcing V F) 10k R3 100V max 10k 8, 8 mA R3 V- or V + max = 16 - 4 = 12V R3 < 12V/8,68 mA = 1382 +1 6 V 0A R3 should be less than 1382 1 2 V max 0 A 8 , 6 8 mA Ideal Op Amp Exercise - = V+ 100k V1 V2 10K Vo in order to keep V - and V+ inside a safe range of ±12V. 0, 12 mA 100K - 16V Rev. 1/6/2003 C. Sauriol Page 6 EXERCISE IDEAL OP AMP ANALYSIS No.3 If F〉 10 10 = = 159 Hz then ∆V o (PP) = − 2π RF CF 2 π 100k × 0,1µ A) t2 ( )∫ V 1 RE C F dt in ( AC) t1 +1V V (ave) = V ( )+ V ( ) + PW T AREA − SW T Vin +0,2V DC AREA Vin(DC) = +0,2V -1V t2 0, 6T ∆Vo ( PP ) = −1000∫ Vin ( AC ) dt 0, 4T t1 ∆Vo ( PP ) = −1000 × area Vout ∆Vo ( PP ) = −1000 × 0.8 × 0.6T Integral does not apply for 50 Hz and 100 Hz. -2V DC ∆Vout = 0,48Vpp at 1 kHz and B) I N P 2 V pp U T t2 ∆Vo ( PP ) = −1000∫ Vin ( AC ) dt t1 ∆Vo ( PP ) = −1000 × area = 1000 × T 1000 × 1VP = = 1VPP 2 2F O U T P U T F = 500 Hz F > 159 Hz integral OK. 48 mVpp at 10 kHz AREA DC level AREA T 2 1 V pp DC level C) +1V t2 I N P U T ∆Vo ( PP ) = −1000∫ Vin ( AC ) dt t1 ∆Vo ( PP ) = −1000 × area = 3T 375 1000 × 0,5 × = = 1VPP 4 F F = 375Hz F > 159 Hz integral OK. Ideal Op Amp Exercise AREA 2 V pp 3T 4 A R E A DC level -1V O / P DC level 1 V pp V (ave) = V + Rev. 1/6/2003 ( )+ V ( ) PW T − SW T Vin(DC) = +0,5V C. Sauriol Page 7 EXERCISE IDEAL OP AMP ANALYSIS No.3 D) 100 µs t2 ∆Vo ( PP) = −1000 ∫ Vin (AC ) dt t1 ∆Vo ( PP) = −1000 × area = 1000 × 100 µ × 5 2 ∆Vo ( PP) = 0,25VPP O/P is a parabolic wave, not a sine wave. I N P 10 U VPP T DC level O U T 0.25 P VPP U T DC level No.4 A) +5V p V o = − RF CE dVin dt 10V V o = −10K × 0,1µ ± 2ms 10 V pp -5V p +5V p O 10 V pp / P V o = m5V P B) I N P U T On edges we have: V o = − 10K × 0,1µ( ±∞ ) V o = m∞ ⇒ m V sat On flat portions we have: V o = −10K × 0,1µ( ±0 ) Vo = 0 The O/P spikes settle down 2 ms -5V p +1V p I N P U T O U T P U T 2 ms -1Vp + V sat 50 µs 0V 50 µs - V sat in 5τ = 5RE CE = 50 µs C) To stabilise negative feedback in order to avoid self oscillations from the circuit. No. 5 Phase shifter X P1 = 0 Φ = 2 × ATAN C = 180 o 0 X X 1 ⇒ 10 o = ATAN C ⇒ TAN 10 o = C = P1 2π FCP1 P1 X Φ = 20 o = 2 × ATAN C P1 1 1 P1 = = = 9.026 nF o 2π FC × TAN 10 2π 1000 ×100k × TAN 10 o ( ) ( ) ( ) ⇒ 9.1 nF std The +ve input sees 0 to 100k DC wise, average of 50k, and the –ve input sees R1IIR1 = R1/2 = 50k R1 = 100K. This means that O/P DC offset will not be minimized for all P1 settings. Ideal Op Amp Exercise Rev. 1/6/2003 C. Sauriol Page 8
© Copyright 2026 Paperzz