Assumed prior knowledge - GCSE level right-angled trigonometry; Pythagoras’ theorem and the Sine and Cosine Rules. 1 BASIC TRIGONOMETRIC IDENTITIES 1.1 Using trigonometry in a right-angled, unit hyptenuse triangle gives the following 3 results sinθ = opp hyp = opp 1 ∴ opp = sinθ cosθ = ad j hyp = ad j 1 ∴ ad j = cosθ tanθ = opp ad j ∴ tanθ ≡ sinθ cosθ [identity 1] 1.2 Applying Pythagoras’ theorem to the same triangle as in 1.1 opp2 + ad j2 = 1 ∴ sin2 θ + cos2 θ ≡ 1 [identity 2] 2.1 Dividing identity 2 by cos2 θ sin2 θ cos2 θ 2 θ + cos ≡ cos2 θ 1 cos2 θ ∴ tan2 θ + 1 ≡ sec2 θ [identity 3] 2.2 Dividing identity 2 by sin2 θ sin2 θ sin2 θ 2 θ + cos ≡ sin2 θ 1 sin2 θ ∴ 1 + cot 2 θ ≡ cosec2 θ [identity 4] 3 THE ADDITION FORMULAE 3.1 Using the distance between two points formula on two right-angled, unit hypotenuse triangles with different angles A and B x2 = (cosA − cosB)2 + (sinA − sinB)2 = cos2 A − 2cosAcosB + cos2 B + sin2 A − 2sinAsinB + sin2 B x2 = (cos2 A + sin2 A) + (cos2 B + sin2 B) − 2(cosAcosB + sinAsinB) x2 = 2 − 2(cosAcosB + sinAsinB) Using the cosine rule on the same two triangles as above x2 = 12 + 12 − 2 × 1 × 1 × cos(A − B) x2 = 2 − 2cos(A − B) Combining both the above statements 2 − 2cos(A − B) ≡ 2 − 2(cosAcosB + sinAsinB) ∴ cos(A − B) ≡ cosAcosB + sinAsinB [identity 5a] 3.2 Replace B by −B in identity 5a cos(A + B) ≡ cosAcos(−B) + sinAsin(−B) since cosine is an even function cos(−B) ≡ cos(B) since sine is an odd function sin(−B) ≡ −sin(B) ∴ cos(A + B) ≡ cosAcosB − sinAsinB [identity 5b] 3.3 Combining indentities 5a and 5b ∴ cos(A ± B) ≡ cosAcosB ∓ sinAsinB [identity 5] 3.4 Using the fact that cos( π2 − θ ) ≡ sinθ since the two functions are related translatively sin(A + B) ≡ cos( π2 − (A + B)) ≡ cos(( π2 − A) − B) sin(A + B) ≡ cos( π2 − A)cosB + sin( π2 − A)sinB ∴ sin(A + B) ≡ sinAcosB + cosAsinB [identity 6a] 3.5 ReplaceB by −B in identity 6a sin(A − B) ≡ sinAcos(−B) + cosAsin(−B) 2 since cosine is an even function cos(−B) ≡ cos(B) since sine is an odd function sin(−B) ≡ −sin(B) ∴ sin(A − B) ≡ sinAcosB − cosAsinB [identity 6b] 3.6 Combining identities 6a and 6b ∴ sin(A ± B) ≡ sinAcosB ± cosAsinB [identity 6] 3.7 For tangents tan(A + B) ≡ sin(A+B) cos(A+B) ≡ sinAcosB+cosAsinB cosAcosB−sinAsinB divide top and bottom through by cosAcosB ∴ tan(A + B) ≡ tanA+tanB 1−tanAtanB [identity 7a] since tan(−B) ≡ −tan(B) ∴ tan(A − B) ≡ tanA−tanB 1+tanAtanB [identity 7b] combining identities 7a and 7b ∴ tan(A ± B) ≡ tanA±tanB 1∓tanAtanB [identity 7] 3.8 Related identities cos(A + B) ≡ cosAcosB − sinAsinB cos(A − B) ≡ cosAcosB + sinAsinB ∴ cos(A + B) + cos(A − B) ≡ 2cosAcosB [identity 8i] ∴ cos(A − B) − cos(A + B) ≡ 2sinAsinB [identity 8ii] sin(A + B) ≡ sinAcosB + cosAsinB sin(A − B) ≡ sinAcosB − cosAsinB ∴ sin(A + B) + sin(A − B) ≡ 2sinAcosB [identity 8iii] ∴ sin(A + B) − sin(A − B) ≡ 2cosAsinB [identity 8iv] 4 THE DOUBLE ANGLE FORMULAE 4.1 Substituting B = A into the addition formulae yields ∴ cos2A ≡ cos2 A − sin2 A [identity 9] ∴ sin2A ≡ 2sinAcosA [identity 10] ∴ tan2A ≡ 2tanA 1−tan2 A [identity 11] 4.2 Replace cos2 A by 1 − sin2 A in identity9 cos2A ≡ 1 − 2sin2 A ∴ 2sin2 A ≡ 1 − cos2A [identity 12i] 4.3 Replace sin2 A by 1 − cos2 A in identity9 cos2A ≡ 2cos2 A − 1 3 ∴ 2cos2 A ≡ 1 + cos2A [identity 12ii] 5 THE FORM asinx + bcosx 5.1 Equating to identity 5 or 6 asinx + bcosx ≡ Rsin(x + α) ≡ Rsinxcosα + Rcosxsinα asinx − bcosx ≡ Rsin(x − α) ≡ Rsinxcosα − Rcosxsinα acosx + bsinx ≡ Rcos(x − α) ≡ Rcosxcosα + Rsinxsinα acosx − bsinx ≡ Rcos(x + α) ≡ Rcosxcosα − Rsinxsinα [identities 13] a and b must be positive and α has to be acute (0 < α < π2 ) - always try to choose the form which produces the terms in the right order and with the correct sign then α can always be acute. Using Pythagoras’ theorem and right-angled trigonometry √ R = (a2 + b2 ) and Rcosα = a and Rsinα = b ∴ tanα = b a or Rsinα = b and Rcosα = a ∴ tanα = a b depending on which form has been used. 4
© Copyright 2026 Paperzz