Practice Problems

9B Practice Final
Note: The final exam will be a multiple choice exam. You will have to bring a scantron sheet FORM No. 882-E
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Find the inverse of the function.
1) f(x) = x3 + 7
1)
3
B) f-1 (x) = x + 7
3
D) f-1 (x) = x - 7
A) Not a one-to-one function
3
C) f-1 (x) = x - 7
Is the function graphed below one-to-one?
2)
2)
y
10
5
-10
-5
5
10
x
-5
-10
A) Yes
B) No
Find the inverse of the function.
3) f(x) = (x - 7)2 , x ≥ 7
3)
A) f-1 (x) = x - 7, x ≥ 7
B) f-1 (x) = - x + 7, x ≥ 0
C) f-1 (x) = x + 7, x ≥ 0
D) Not a one-to-one function
Find the value of df-1 /dx at x = f(a).
4) f(x) = x3 - 9x2 - 1, x ≥ 6, a = 5
1
B) -15
A) - 101
4)
1
C) - 15
D) - 1
Find the formula for df-1 /dx.
5) f(x) = (8 - x)3
-1
A)
3x2/3
5)
C) -3(8 - x)2
B) x2/3
D) 8 - x1/3
Express as a single logarithm and, if possible, simplify.
6) ln (72x + 36) - 2 ln 6
A) ln (6x + 2)
6)
B) ln (72x)
C) ln (2x + 1)
D. Vassilev
D) ln (1296(2x + 1))
Find the derivative of y with respect to x, t, or θ, as appropriate.
1 - x
7) y = ln (x + 2)4
A)
3x - 6
(x + 2)(1 - x)
Evaluate the integral.
3 5
x + 1
dx
8)
x6 + 6x
2
2
3
A) ln 3
2
B)
3x - 6
(x + 2)5
7)
C) ln 5x - 6
(x + 2)5
D)
(x + 2)4
1 - x
∫
9)
∫
7π/4
tan 0
A)
8)
B)
1
2
ln 6
21
C)
1
2
ln 6
3
D)
1
747
ln 6
76
x
dx
7
-7 2
2
9)
B)
7 2
2
C)
7 ln 2
2
D)
-7 ln 2
2
Solve the problem.
10) Find the volume of the solid that is generated by revolving the area bounded by y = x = 0, x = 2, and y = 0 about the x-axis.
25
5
A)
π ln (2)
B) π ln (2)
2
2
C)
5 2
π ln (5)
2
D)
5
,
2x + 1
10)
25
π ln (5)
2
11) Locate and identify the absolute extreme values of sin (ln x) on 4, 5
11)
A) Absolute maximum at (eπ/2, 1); absolute minimum at 5, sin ln 5
B) Absolute maximum at (5, sin (ln 4)); absolute minimum at (4, sin (ln 4))
C) Absolute maximum at(5, sin (ln 4)); absolute minimum at (eπ/2, -1)
D) Absolute maximum at (eπ/2, 1); absolute minimum at (4, sin (ln 4))
Simplify the expression.
12) ln e10x
1
A)
10
12)
B) 10
C) 10x
D) e10
e0.4
B)
ln 0.6
2
C)
3
2
D) ln 3
Solve for y or k, as appropriate.
13) e(ln 0.6)k = 0.4
ln 0.4
A)
ln 0.6
13)
2
Find the derivative of y with respect to x, t, or θ, as appropriate.
14) y = 8xex - 8ex
A) 8ex
14)
B) 8xex + 16ex
C) 8xex
D) 8x
1
C) - 1
θ
1
D) eθ + 1
θ
15) y = ln (10θe-θ)
A) ln (10e-θ(1-θ))
Find 15)
B)
1
10θeθ
dy
.
dx
16) ln 6xy = ex+y
ex+y
A)
e6x
16)
B)
y
x
C)
xyex+y - y
x - xyex+y
D)
2xyex+y
x + y
Evaluate the integral.
17)
∫ 3e-7x dx
1
A) - e-7x+1 + C
2
18)
∫
17)
B) 3e-7x + C
C) - 3
D) - e-7x + C
7
e2θ
dθ
1 + e2θ
18)
A) 2 ln (1 + e2θ) + C
C)
19)
3 -7x2
e
+ C
14
B)
ln (1 + e2θ)
+ C
2
ln (1 + 2eθ)
+ C
2
D) ln (1 + e2θ) + C
∫ x6e-x7 dx
A) -7e-x8 + C
19)
1
C) - e-x8 + C
7
B) e-x7 + C
1
D) - e-x7 + C
7
Simplify the expression.
20) 4 log4 8
A) 32
20)
B) 4
C) log4 8
Solve the equation for x.
1
21) ln e + 6 -2log6 (x) = log7 (49)
x
21)
A) -1
C)
D) 8
B) 1
1
42
D) No real solution
3
Find the derivative of y with respect to the independent variable.
22) y = 4 ln 2t
ln 4 ln 2t
A)
4
t
22)
2 ln 4
B)
t
C) 4 ln 2t
2 ln 4 ln 2t
D)
4
t
23) y = 9 x
23)
A) 9 x
B) 9 x ln 9
C) 9 x ln x
D) x ln 9
Evaluate the integral.
24)
2
∫
x8 x2 dx
24)
1
A) 28
25)
∫
π/2
B)
8
ln 8
C)
8 2 - 8
2 ln 8
D)
28
ln 8
5 cos t sin t dt
25)
0
A) 4
26)
∫
6
B)
5 π/2-1
ln 5
C)
4
ln 5
D)
-4
ln 5
( 5 + 1)x 5 dx
26)
0
A) x 5 + 1 + C
B) 6 5 + 1
C)
6 5
ln 6
D) 6 5 + 1 - 1
Solve the problem.
27) A certain radioactive isotope decays at a rate of 2% per 100 years. If t represents time in years and
y represents the amount of the isotope left then the equation for the situation is y = y0 e-0.0002t. In
27)
how many years will there be 93% of the isotope left?
A) 253 years
B) 350 years
C) 700 years
D) 363 years
28) A loaf of bread is removed from an oven at 350° F and cooled in a room whose temperature is
70° F. If the bread cools to 210° F in 20 minutes, how much longer will it take the bread to cool to
170° F.
A) 21 min
B) 10 min
C) 30 min
D) 11 min
29) Find the half-life of the radioactive element radium, assuming that its decay constant is
k = 4.332 x 10-4 , with time measured in years.
A) 2308 years
B) 1400 years
C) 800 years
4
28)
D) 1600 years
29)
30) The charcoal from a tree killed in a volcanic eruption contained 66.8% of the carbon-14 found in
living matter. How old is the tree, to the nearest year? Use 5700 years for the half-life of
carbon-14.
A) 1594 years
B) 3318 years
C) 2300 years
30)
D) 5700 years
31) The amount of alcohol in the bloodstream, A, declines at a rate proportional to the amount, that is,
dA
= - kA. If k = 0.3 for a particular person, how long will it take for his alcohol concentration to
dt
31)
decrease from 0.10% to 0.05%? Give your answer to the nearest tenth of an hour.
A) 3.5 hr
B) 2.3 hr
C) 4.6 hr
D) 0.2 hr
Find the slowest growing and the fastest growing functions as x→∞.
32) y = x + 7
y = ex
32)
y = x2 + cos2 x
y = 6 x
A) Slowest: y = ex
Fastest: y = x2 + cos2 x
B) Slowest: y = x + 7
Fastest: y = 6 x
C) Slowest: y = x + 7
Fastest: y = x2 + cos2 x
D) Slowest: y = x + 7
Fastest: y = ex
33) y = x2 + 9x
y = x2
33)
y = x4 + x2
y = 3x2
A) Slowest: y = x4 + x2
Fastest: y = x2 + 9x
B) Slowest: y = x4 + x2
Fastest: y = 3x2
C) They all grow at the same rate.
D) Slowest: y = x2 and y = 3x2 grow at the same rate.
Fastest: y = x4 + x2
5
34) y = ex
y = ex/6
34)
y = xx
y = 7 x
A) Slowest: y = ex/6 and y = ex grow at the same rate.
Fastest: y = 7 x
B) Slowest: y = ex/6
Fastest: y = xx
C) Slowest: y = xx
Fastest: y = 7 x
D) Slowest: y = ex/6 and y = ex grow at the same rate.
Fastest: y = xx
TRUE/FALSE. Write ʹTʹ if the statement is true and ʹFʹ if the statement is false.
Determine if the statement is true or false as x→∞.
35) x = o(x + 1)
35)
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Find the angle.
36) cos-1 -1
π
A) - 2
36)
B)
1
π
C) 0
D) π
-π
C)
4
3π
D)
4
37) tan-1 -1
37)
A) 0
B) 1
38) sec -1 2
π
7π
A) ± 2πn, ± 2πn
4
4
C)
38)
7π
B)
4
3π
4
D)
π
4
Evaluate exactly.
39) cos sin-1
A)
12
13
5
13
39)
B)
12
5
C)
-12
13
D)
-5
13
π
40) cos-1 cos - 3
A)
π
3
40)
B) - π
3
C) - 6
3
π
D)
4π
3
Find the limit.
41)
lim sin-1 x
x→-1 +
A) - 42)
41)
π
2
B) -1
D)
π
2
lim cos-1 x
x→-1 +
42)
B) -1
A) 1
43)
C) 1
C) 0
D) π
lim tan-1 x
x→-∞
43)
A) 0
B)
π
2
C) - π
2
D) -∞
44) lim sec -1 x
x→∞
44)
A) 0
B)
π
2
C) - π
2
D) ∞
Find the derivative of y with respect to x.
6x
45) y = tan-1 5
A)
-30
B)
36x2 + 25
45)
30
C)
36x2 + 25
46) y = cos-1 (5x2 + 4)
5
A)
1 + (5x2 + 4)2
C)
A)
C)
25 - 36x2
D)
25
36x2 + 25
46)
10x
B)
1 + (5x2 + 4)2
-10x
1 - (5x2 + 4)2
47) y = sec -1 6
D)
10x
1 - (5x2 + 4)2
6x + 13
1
47)
-6
B)
1 + (6x + 13)2
-6
D)
(6x + 13) (6x + 13)2 - 1
48) y = tan-1 (ln 2x)
2
A)
x(1 + ln2 2x)
6
(6x + 13)2 - 13
6
(6x + 13) (6x + 13)2 - 1
48)
B)
1
C)
1 + ln2 2x
7
1
x(1 + ln2 2x)
D)
1
x 1 + ln2 2x
1
49) y = sin-1 49)
x3
-3x3
A)
B)
1 - x6
-3
x x6 - 1
C)
-3
x 1 - x6
D)
-3
1 + x6
Evaluate the integral.
8 dx
50)
9 - 64x2
∫
A) sin-1 ∫
8
x + C
3
8
B) tan-1 x + C
3
1 -1 8
sin x + C
3
3
C)
51)
50)
D)
dx
2 x 1 + x
51)
A) tan-1 x + C
52)
∫
π/2
π/4
∫
C)
A) - π
4
C) π
1
tan-1 x + C
2
D)
π
8
53)
π
12
B)
π
6
C)
π
12
dx
π
6
B) sin-1 (x + 4) + C
1
-x2 - 8x - 15+ C
2
D) cos-1 (x + 4) + C
∫ cos-1 x dx
55)
A) x cos-1 x - 2 1 - x2 + C
C) x cos-1 x - D) - 54)
-x2 - 8x - 15
C)
D)
dt
t 49t2 - 1
A) -sin-1 (x + 4) + C
55)
1
ln x + C
2
52)
B)
- 2/7
∫
1
sin-1 x + C
2
2 sin 2θ dθ
1 + cos2 2θ
-2/7
54)
B)
π
2
A)
53)
1
8
tan-1 x + C
3
3
1
1 - x2
B) x cos-1 x - 1 - x2 + C
D) x cos-1 x + 1 - x2 + C
+ C
8
56)
57)
∫
∫
23x sin x dx
56)
A) 23 sin x + 23x cos x + C
B) 23 sin x - 23x cos x + C
C) 23 sin x - x cos x + C
D) 23 sin x - 23 cos x + C
∞
e-x cos 3 x dx
57)
0
A) 1
58)
3
10
C) Diverges
58)
B) 4xex - 4ex + C
C) xex - 4ex + C
D) 4ex - 4xex + C
59)
1 4
1
x ln 8x + x4 + C
4
16
1
C) ln 8x - x4 + C
4
∫
C)
∫
B)
1 4
1
x ln 8x - x4 + C
4
16
D)
1 4
1
x ln 8x - x5 + C
4
20
dx
(x + 5) x2 + 10x + 24
60)
A) csc-1 (x + 5) + C
61)
1
10
∫ x3 ln 8x dx
A)
60)
D)
∫ 4xex dx
A) 4ex - e x + C
59)
B)
B) sec -1 (x + 5) + C
sin-1 (x + 5)
+ C
5
D)
sec -1 (x + 5)
+ C
5
(sin-1 x)3
dx
1 - x2
A) 3(sin-1 x)2 + C
61)
B) (cos-1 x)4 + C
C)
ln (sin x)
+ C
1 - x2
D)
(sin-1 x)4
+ C
4
Find the limit.
62) lim
x→0
A)
sin-1 4x
x
1
4
62)
B) 1
C) 4
9
D) ∞
6
63) lim x tan-1 x
x→∞
A)
63)
1
6
B) -6
C) 6
D) ∞
A value of sinh x or cosh x is given. Use the definitions and the identity cosh2 x - sinh2 x = 1 to find the value of the
other indicated hyperbolic function.
5
64) sinh x = , cosh x =
64)
12
A) 169
144
65) sinh x =
A)
12
13
C) 13
12
D) - 13
12
4
, tanh x =
3
5
4
66) cosh x = A)
B) 65)
B)
4
5
C) 5
3
D) -
4
5
17
, x < 0, sech x =
8
8
17
66)
B) - 289
64
C)
15
17
D) - 8
15
Rewrite the expression in terms of exponentials and simplify the results.
67) cosh 5x + sinh 5x
A) e5x
67)
C) e5x - e-5x
B) 5x
D) 2e5x
Find the derivative of y.
68) y = cosh x7
68)
A) -sinh x7
B) -7x6 sinh x7
C) sinh x7
D) 7x6 sinh x7
C) 2 csch 2x
1
D)
sinh 2x
69) y = ln (sinh 2x)
A) coth 2x
70) y = 4t3 tanh 69)
B) 2 coth 2x
1
t2
A) 12t2 tanh 70)
1
1
- 8 sech t2
t2
B) 12t2 tanh 1
1
C) 12t2 tanh + 8 sech2 t2
t2
1
1
- 8 sech2 t2
t2
1
1
D) 12t2 tanh - 4 sech2 t2
t2
10
Find the derivative of y with respect to the appropriate variable.
71) y = sinh-1 5x
5
A)
2 5x(5x - 1)
71)
B)
1
1 + 5x
5
C)
2 5x(1 + 5x)
72) y = 7 tanh-1 (cos x)
-7
A)
cos x
C) ln 1
1 - x2
1
D)
2 5x(1 + 5x)
72)
-7 sin x
B)
1+ cos2 x
sin x
D)
-7
sin x
Evaluate the integral.
x
73)
cosh dx
4
∫
73)
x
A) sin-1 + C
4
74)
x
C) 4 sinh + C
4
x
D) sinh + C
4
∫ coth (5x) dx
A)
∫
74)
1
ln sinh 5x + C
5
C) 5 ln sinh 75)
x
B) -4 sinh + C
4
B)
x
+ C
5
1
csch2 5x + C
5
D) ln sinh 5x + C
ln 9
tanh x dx
75)
ln 2
A) ln 2
B)
119
18
C) ln 119
18
D) ln 164
45
Solve the problem.
76) Find the volume of the solid generated by revolving the region bounded by the curve y = ln x, the
x-axis, and the vertical line x = e2 about the x-axis.
A) 2π(e2 - 1)
B) π(e - 1)
C) π e
D) π(e2 - 1)
77) Find the volume of the solid generated by revolving the region in the first quadrant bounded by
y = ex and the x-axis, from x = 0 to x = ln 7, about the y-axis.
A) 14πln 7
B) 2π(7ln 7 - 6)
C) 7πln 7
77)
D) 2π(7ln 7 - 7)
78) Find the volume of the solid generated by revolving the region in the first quadrant bounded by
the x-axis and the curve y = sin 6x, 0 ≤ x ≤ π/6 about the line x = π/6.
1 2
π2
1 2
1
A)
π
B)
C)
π - π
D)
π
18
36
18
18
11
76)
78)
Expand the quotient by partial fractions.
5x + 7
79)
(x - 5)(x - 1)
80)
81)
79)
A)
8
3
- x - 5
x - 1
B)
32
12
+ x - 5
x - 1
C)
8
3
- x - 5
(x - 5)(x - 1)
D)
8
3
+ x - 5
x - 1
x + 6
2
x + 8x + 16
80)
A)
1
2
- x + 4
(x + 4)2
B)
2
1
+ x + 4
(x + 4)2
C)
1
3
+ x + 4
x + 6
D)
1
2
+ x + 4
(x + 4)2
y + 6
2
y (y + 1)
81)
5
6
5
A) + + y y2
y + 1
B) 6
5
+ y + 1
2
y
5
6
5
C) - + + y y2
y + 1
5
6
6
D) - + + y y2
y + 1
Express the integrand as a sum of partial fractions and evaluate the integral.
2x + 23
82)
dx
x2 + 11x + 28
∫
83)
84)
∫
∫
A) ln (x + 4)4
+ C
(x + 7)5
B) ln (x + 4)3
+ C
(x + 7)5
C) ln (x + 4) 6
+ C
(x + 7)5
D) ln (x + 4)5
+ C
(x + 7)3
8x - 12
x2 - 3x - 4
82)
83)
dx
A) ln 4(x - 4) + 4(x + 1) + C
B) 4ln x + 4 + 4ln x - 1 + C
C) 5ln x - 4 - 4ln x + 1 + C
D) 4ln x - 4 + 4ln x + 1 + C
8x + 27
dx
3
x + 6x2 + 9x
84)
A) 2 ln 1
x
- + C
x + 3
x + 3
B) 3 ln x
5
+ + C
x + 3
x + 3
C) 3 ln 1
x
+ + C
x + 3
x + 3
D) 3 ln x
6
- + C
x + 3
x + 3
12
Evaluate the integral by first performing long division on the integrand and then writing the proper fraction as a sum of
partial fractions.
8x3 + 8x2 + 8
85)
dx
85)
x2 + x
∫
A) 4x2 + 8 ln x - 1 - 8 ln x + C
B) 8x2 + 8 ln x + 1 - 8 ln x + C
C) 4x2 - 8 ln x + 1 + 8 ln x + C
D) 8 ln x + 1 - 8 ln x + C
Express the integrand as a sum of partial fractions and evaluate the integral.
-2x2 + 8x + 8
dx
86)
(x2 + 4)(x - 2)3
∫
x
2
1
A) tan-1 - - + C
2 x - 2 (x - 2)2
C)
1
x
1
tan-1 + ln x - 2 - + C
2
2
(x - 2)2
86)
B)
1
x
1
1
tan-1 + - + C
2
2 x - 2 (x - 2)2
D)
1
x
1
1
tan-1 - + + C
2
2
(x - 2)2 (x - 2)3
Evaluate the integral.
87)
∫ 6 cos3 3x dx
88) 87)
2
A) 2 sin 3x - cos3 3x + C
3
2
B) 2 sin 3x - sin3 3x + C
3
C) 6 sin 3x - 2 sin3 3x + C
2
D) 2 sin 3x + sin3 3x + C
3
∫
π/2
cos2 2x sin3 2x dx
88)
0
A)
89)
∫
4
5
1
5
C)
1
10
cot3 x
dx
7
A)
1
1
cot2 x - ln sin x + C
7
14
B)
1
cot4 x sec x + C
28
D)
1
cot4 x + C
28
∫ 7 sec4 x dx
A)
D)
2
5
89)
1
cot2 x + ln sin x + C
14
C) - 90)
B)
90)
7
tan3 x + C
3
7
B) - tan3 x + C
3
7
C) 7 tan x + tan3 x + C
3
D) 7(sec x + tan x)5 + C
13
91)
∫
3e2t + 4et
dt
e2t - 4et + 4
91)
A) 3 ln et - 2 + 10(et - 2)-1 + C
C) 4 ln et - 2 - 6(et - 2)-1 + C
92)
B) 3 ln t - 2 - 10(t - 2)-1 + C
D) 3 ln et - 2 - 10(et - 2)-1 + C
∫ sin 6x cos 4x dx
A) - 92)
1
1
cos 10x - cos 2x + C
20
4
1
1
B) sin 2x + sin 10x+ C
4
20
1
1
C) sin 2x - sin 10x+ C
20
4
93) ∫
π/15
D) - 1
1
cos 10x - sin 10 x + C
20
20
sec 3 5x dx
93)
-π/15
Give your answer in exact form.
2 3
1
A)
+ ln(7 + 4 3)
5
10
C)
94)
∫
B)
2 3
1
+ ln(2 3)
5
10
D)
3
1
+ ln(7 + 4 3)
5
10
2
1
+ ln 4
5 10
π/2
cos 5t cos 4t dt
94)
0
A)
7
9
B)
10
9
C)
8
9
D)
5
9
Solve the problem.
95) Find the length of the curve y = ln(sin x), π/6 ≤ x ≤ π/2
A) ln( 3 + 1)
B) 1 - ln( 3 + 2)
C) ln( 3 + 2)
95)
D) ln( 3)
Integrate the function.
3 dx
96)
5 + x2
∫
96)
A) 3 ln x + 5 + x2 + C
C)
B) 3 ln 5 + x2 + C
2
+ C
2
x + 5
D) x + ln 3 + 5 + x2 + C
14
97)
∫
dx
2
(x + 25)3/2
A)
98)
∫
+ 25 - x2
+ C
x
B)
+ C
D)
x
25 25 + x2
x
5 25 + x2
+ C
+ C
81 - x2 dx
C)
∫
25 25 - x2
x 25 - x2
A)
99)
x
5
C)
97)
98)
81
x
x 81 - x2
sin-1 + + C
2
2
9
x
81 81 - x2
+ B)
81 - x2
+ C
x
D)
81x
81 - x2
x
+ + C
2
81
x 81 - x2
x - + C
2
2
dx
x 36x2 - 4
A) 3 sec -1 3x + C
99)
B) 3 sin-1 3x + C
C)
1
sec -1 3x + C
2
D)
1
sin-1 3x + C
6
Use a trigonometric substitution to evaluate the integral.
dx
100)
2 x 1 + x
∫
A) tan-1 x + C
B)
100)
1
sin-1 x + C
2
C)
1
tan-1 x + C
2
D)
1
ln x + C
2
Evaluate the integral.
101)
102)
∫ sin 8t sin 2t dt
∫
101)
A)
1
1
sin 6t + sin 10t + C
12
20
B)
1
1
sin 6t - sin 10t + C
12
20
C)
1
1
sin 8t - sin 2t + C
20
12
D)
1
1
sin 6t - cos 10t + C
12
20
ln 5
cosh x dx
102)
0
A) - 19
10
B)
19
10
C)
15
12
5
D)
24
5
Answer Key
Testname: PRACTICEFINAL
1) D
Objective: (7.1) Determine Inverse from Equation
2) B
Objective: (7.1) Determine If Function is One-to-One (Y/N)
3) C
Objective: (7.1) Determine Inverse from Equation
4) C
Objective: (7.1) Find the Value of Derivative of Inverse
5) A
Objective: (7.1) Find Formula for Derivative of Inverse
6) C
Objective: (7.2) Express as a Single Logarithm
7) A
Objective: (7.2) Find Derivative of Natural Logarithm
8) D
Objective: (7.2) Evaluate Integral That Yields Natural Log
9) C
Objective: (7.2) Evaluate Integral That Yields Natural Log
10) D
Objective: (7.2) Solve Apps: Differentiation/Integration Involving Natural Logs
11) D
Objective: (7.2) Solve Apps: Differentiation/Integration Involving Natural Logs
12) C
Objective: (7.3) Find Value of Exp/Log Expression
13) A
Objective: (7.3) Solve Exp/Log Equation for Variable
14) C
Objective: (7.3) Find Derivative of Natural Exponential
15) C
Objective: (7.3) Find Derivative of Natural Exponential
16) C
Objective: (7.3) Find dy/dx Implicitly from Eqn w/ Log and Exp
17) D
Objective: (7.3) Evaluate Integral of Natural Exponential Func
18) C
Objective: (7.3) Evaluate Integral of Natural Exponential Func
19) D
Objective: (7.3) Evaluate Integral of Natural Exponential Func
20) D
Objective: (7.4) Evaluate Logarithmic Expression
21) B
Objective: (7.4) Solve Exponential/Logarithmic Equation
22) A
Objective: (7.4) Find Derivative of General Exponential
23) B
Objective: (7.4) Find Derivative of General Exponential
D. Vassilev
Answer Key
Testname: PRACTICEFINAL
24) D
Objective: (7.4) Evaluate Integral of General Exponential Func
25) C
Objective: (7.4) Evaluate Integral of General Exponential Func
26) B
Objective: (7.4) Evaluate Integral of General Exponential Func
27) D
Objective: (7.5) Solve Apps: Exponential Growth and Decay
28) B
Objective: (7.5) Solve Apps: Exponential Growth and Decay
29) D
Objective: (7.5) Solve Apps: Exponential Growth and Decay
30) B
Objective: (7.5) Solve Apps: Exponential Growth and Decay
31) B
Objective: (7.5) Solve Apps: Exponential Growth and Decay
32) B
Objective: (7.6) Compare Growth Rates
33) C
Objective: (7.6) Compare Growth Rates
34) B
Objective: (7.6) Compare Growth Rates
35) FALSE
Objective: (7.6) Use Big-oh and Little-oh Notation (T/F)
36) D
Objective: (7.7) Find Value of Inverse Trigonometric Function
37) C
Objective: (7.7) Find Value of Inverse Trigonometric Function
38) D
Objective: (7.7) Find Value of Inverse Trigonometric Function
39) A
Objective: (7.7) Evaluate Inverse Expressions
40) A
Objective: (7.7) Evaluate Inverse Expressions
41) A
Objective: (7.7) Find Limit: Inverse Trig Function
42) D
Objective: (7.7) Find Limit: Inverse Trig Function
43) C
Objective: (7.7) Find Limit: Inverse Trig Function
44) B
Objective: (7.7) Find Limit: Inverse Trig Function
45) B
Objective: (7.7) Find Derivative: Inverse Trig Function
46) C
Objective: (7.7) Find Derivative: Inverse Trig Function
17
Answer Key
Testname: PRACTICEFINAL
47) D
Objective: (7.7) Find Derivative: Inverse Trig Function
48) C
Objective: (7.7) Find Derivative: Inverse Trig Function
49) B
Objective: (7.7) Find Derivative: Inverse Trig Function
50) A
Objective: (7.7) Evaluate Integral: Substitution I
51) A
Objective: (7.7) Evaluate Integral: Substitution I
52) B
Objective: (7.7) Evaluate Integral: Substitution I
53) A
Objective: (7.7) Evaluate Integral: Substitution I
54) B
Objective: (7.7) Evaluate Integral: Completing the Square
55) B
Objective: (8.2) Evaluate Integral Using Integration by Parts I
56) B
Objective: (8.2) Evaluate Integral Using Integration by Parts I
57) D
Objective: (8.2) Evaluate Integral Using Integration by Parts I
58) B
Objective: (8.2) Evaluate Integral Using Integration by Parts II
59) B
Objective: (8.2) Evaluate Integral Using Integration by Parts II
60) B
Objective: (7.7) Evaluate Integral: Completing the Square
61) D
Objective: (7.7) Evaluate Integral: Substitution II
62) C
Objective: (7.7) Find Limit: Inverse Trig Function II
63) C
Objective: (7.7) Find Limit: Inverse Trig Function II
64) C
Objective: (7.8) Find Values of Hyperbolic Function
65) B
Objective: (7.8) Find Values of Hyperbolic Function
66) A
Objective: (7.8) Find Values of Hyperbolic Function
67) A
Objective: (7.8) Write Hyperbolic Function in Terms of Exponential Functions
68) D
Objective: (7.8) Find Derivative of Hyperbolic Function
69) B
Objective: (7.8) Find Derivative of Hyperbolic Function
18
Answer Key
Testname: PRACTICEFINAL
70) B
Objective: (7.8) Find Derivative of Hyperbolic Function
71) C
Objective: (7.8) Find Derivative of Inverse Hyperbolic Function
72) D
Objective: (7.8) Find Derivative of Inverse Hyperbolic Function
73) C
Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function)
74) A
Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function)
75) D
Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function)
76) A
Objective: (8.2) Find Volume of Solid of Revolution Using Integration by Parts
77) B
Objective: (8.2) Find Volume of Solid of Revolution Using Integration by Parts
78) A
Objective: (8.2) Find Volume of Solid of Revolution Using Integration by Parts
79) A
Objective: (8.3) Expand Quotient into Partial Fractions
80) D
Objective: (8.3) Expand Quotient into Partial Fractions
81) C
Objective: (8.3) Expand Quotient into Partial Fractions
82) D
Objective: (8.3) Evaluate Integral by Partial Fractions (Nonrepeated Lin Factors)
83) D
Objective: (8.3) Evaluate Integral by Partial Fractions (Nonrepeated Lin Factors)
84) C
Objective: (8.3) Evaluate Integral by Partial Fractions (Repeated Lin Factors)New Section
85) C
Objective: (8.3) Evaluate Integral by Partial Fractions (Improper Fraction)
86) B
Objective: (8.3) Evaluate Integral by Partial Fractions (Irred Quad Factor)
87) B
Objective: (8.4) Evaluate Integral (Product of Powers of Sines and Cosines)
88) D
Objective: (8.4) Evaluate Integral (Product of Powers of Sines and Cosines)
89) C
Objective: (8.4) Evaluate Integral (Powers of Tan/Cot/Sec/Csc)
90) C
Objective: (8.4) Evaluate Integral (Powers of Tan/Cot/Sec/Csc)
91) D
Objective: (8.3) Evaluate Integral by Partial Fractions and Substitution
92) A
Objective: (8.4) Evaluate Integral (Product of Sines and Cosines)
19
Answer Key
Testname: PRACTICEFINAL
93) A
Objective: (8.4) Evaluate Integral (Powers of Tan/Cot/Sec/Csc)
94) B
Objective: (8.4) Evaluate Integral (Product of Sines and Cosines)
95) C
Objective: (8.4) Solve Apps: Arc Length, Volume
96) A
Objective: (8.5) Evaluate Integral by Trig Substitution I
97) B
Objective: (8.5) Evaluate Integral by Trig Substitution I
98) A
Objective: (8.5) Evaluate Integral by Trig Substitution I
99) C
Objective: (8.5) Evaluate Integral by Trig Substitution I
100) A
Objective: (8.5) Evaluate Integral by Combined Substitution
101) B
Objective: (8.4) Evaluate Integral (Product of Sines and Cosines)
102) C
Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function)
20