9B Practice Final Note: The final exam will be a multiple choice exam. You will have to bring a scantron sheet FORM No. 882-E MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the inverse of the function. 1) f(x) = x3 + 7 1) 3 B) f-1 (x) = x + 7 3 D) f-1 (x) = x - 7 A) Not a one-to-one function 3 C) f-1 (x) = x - 7 Is the function graphed below one-to-one? 2) 2) y 10 5 -10 -5 5 10 x -5 -10 A) Yes B) No Find the inverse of the function. 3) f(x) = (x - 7)2 , x ≥ 7 3) A) f-1 (x) = x - 7, x ≥ 7 B) f-1 (x) = - x + 7, x ≥ 0 C) f-1 (x) = x + 7, x ≥ 0 D) Not a one-to-one function Find the value of df-1 /dx at x = f(a). 4) f(x) = x3 - 9x2 - 1, x ≥ 6, a = 5 1 B) -15 A) - 101 4) 1 C) - 15 D) - 1 Find the formula for df-1 /dx. 5) f(x) = (8 - x)3 -1 A) 3x2/3 5) C) -3(8 - x)2 B) x2/3 D) 8 - x1/3 Express as a single logarithm and, if possible, simplify. 6) ln (72x + 36) - 2 ln 6 A) ln (6x + 2) 6) B) ln (72x) C) ln (2x + 1) D. Vassilev D) ln (1296(2x + 1)) Find the derivative of y with respect to x, t, or θ, as appropriate. 1 - x 7) y = ln (x + 2)4 A) 3x - 6 (x + 2)(1 - x) Evaluate the integral. 3 5 x + 1 dx 8) x6 + 6x 2 2 3 A) ln 3 2 B) 3x - 6 (x + 2)5 7) C) ln 5x - 6 (x + 2)5 D) (x + 2)4 1 - x ∫ 9) ∫ 7π/4 tan 0 A) 8) B) 1 2 ln 6 21 C) 1 2 ln 6 3 D) 1 747 ln 6 76 x dx 7 -7 2 2 9) B) 7 2 2 C) 7 ln 2 2 D) -7 ln 2 2 Solve the problem. 10) Find the volume of the solid that is generated by revolving the area bounded by y = x = 0, x = 2, and y = 0 about the x-axis. 25 5 A) π ln (2) B) π ln (2) 2 2 C) 5 2 π ln (5) 2 D) 5 , 2x + 1 10) 25 π ln (5) 2 11) Locate and identify the absolute extreme values of sin (ln x) on 4, 5 11) A) Absolute maximum at (eπ/2, 1); absolute minimum at 5, sin ln 5 B) Absolute maximum at (5, sin (ln 4)); absolute minimum at (4, sin (ln 4)) C) Absolute maximum at(5, sin (ln 4)); absolute minimum at (eπ/2, -1) D) Absolute maximum at (eπ/2, 1); absolute minimum at (4, sin (ln 4)) Simplify the expression. 12) ln e10x 1 A) 10 12) B) 10 C) 10x D) e10 e0.4 B) ln 0.6 2 C) 3 2 D) ln 3 Solve for y or k, as appropriate. 13) e(ln 0.6)k = 0.4 ln 0.4 A) ln 0.6 13) 2 Find the derivative of y with respect to x, t, or θ, as appropriate. 14) y = 8xex - 8ex A) 8ex 14) B) 8xex + 16ex C) 8xex D) 8x 1 C) - 1 θ 1 D) eθ + 1 θ 15) y = ln (10θe-θ) A) ln (10e-θ(1-θ)) Find 15) B) 1 10θeθ dy . dx 16) ln 6xy = ex+y ex+y A) e6x 16) B) y x C) xyex+y - y x - xyex+y D) 2xyex+y x + y Evaluate the integral. 17) ∫ 3e-7x dx 1 A) - e-7x+1 + C 2 18) ∫ 17) B) 3e-7x + C C) - 3 D) - e-7x + C 7 e2θ dθ 1 + e2θ 18) A) 2 ln (1 + e2θ) + C C) 19) 3 -7x2 e + C 14 B) ln (1 + e2θ) + C 2 ln (1 + 2eθ) + C 2 D) ln (1 + e2θ) + C ∫ x6e-x7 dx A) -7e-x8 + C 19) 1 C) - e-x8 + C 7 B) e-x7 + C 1 D) - e-x7 + C 7 Simplify the expression. 20) 4 log4 8 A) 32 20) B) 4 C) log4 8 Solve the equation for x. 1 21) ln e + 6 -2log6 (x) = log7 (49) x 21) A) -1 C) D) 8 B) 1 1 42 D) No real solution 3 Find the derivative of y with respect to the independent variable. 22) y = 4 ln 2t ln 4 ln 2t A) 4 t 22) 2 ln 4 B) t C) 4 ln 2t 2 ln 4 ln 2t D) 4 t 23) y = 9 x 23) A) 9 x B) 9 x ln 9 C) 9 x ln x D) x ln 9 Evaluate the integral. 24) 2 ∫ x8 x2 dx 24) 1 A) 28 25) ∫ π/2 B) 8 ln 8 C) 8 2 - 8 2 ln 8 D) 28 ln 8 5 cos t sin t dt 25) 0 A) 4 26) ∫ 6 B) 5 π/2-1 ln 5 C) 4 ln 5 D) -4 ln 5 ( 5 + 1)x 5 dx 26) 0 A) x 5 + 1 + C B) 6 5 + 1 C) 6 5 ln 6 D) 6 5 + 1 - 1 Solve the problem. 27) A certain radioactive isotope decays at a rate of 2% per 100 years. If t represents time in years and y represents the amount of the isotope left then the equation for the situation is y = y0 e-0.0002t. In 27) how many years will there be 93% of the isotope left? A) 253 years B) 350 years C) 700 years D) 363 years 28) A loaf of bread is removed from an oven at 350° F and cooled in a room whose temperature is 70° F. If the bread cools to 210° F in 20 minutes, how much longer will it take the bread to cool to 170° F. A) 21 min B) 10 min C) 30 min D) 11 min 29) Find the half-life of the radioactive element radium, assuming that its decay constant is k = 4.332 x 10-4 , with time measured in years. A) 2308 years B) 1400 years C) 800 years 4 28) D) 1600 years 29) 30) The charcoal from a tree killed in a volcanic eruption contained 66.8% of the carbon-14 found in living matter. How old is the tree, to the nearest year? Use 5700 years for the half-life of carbon-14. A) 1594 years B) 3318 years C) 2300 years 30) D) 5700 years 31) The amount of alcohol in the bloodstream, A, declines at a rate proportional to the amount, that is, dA = - kA. If k = 0.3 for a particular person, how long will it take for his alcohol concentration to dt 31) decrease from 0.10% to 0.05%? Give your answer to the nearest tenth of an hour. A) 3.5 hr B) 2.3 hr C) 4.6 hr D) 0.2 hr Find the slowest growing and the fastest growing functions as x→∞. 32) y = x + 7 y = ex 32) y = x2 + cos2 x y = 6 x A) Slowest: y = ex Fastest: y = x2 + cos2 x B) Slowest: y = x + 7 Fastest: y = 6 x C) Slowest: y = x + 7 Fastest: y = x2 + cos2 x D) Slowest: y = x + 7 Fastest: y = ex 33) y = x2 + 9x y = x2 33) y = x4 + x2 y = 3x2 A) Slowest: y = x4 + x2 Fastest: y = x2 + 9x B) Slowest: y = x4 + x2 Fastest: y = 3x2 C) They all grow at the same rate. D) Slowest: y = x2 and y = 3x2 grow at the same rate. Fastest: y = x4 + x2 5 34) y = ex y = ex/6 34) y = xx y = 7 x A) Slowest: y = ex/6 and y = ex grow at the same rate. Fastest: y = 7 x B) Slowest: y = ex/6 Fastest: y = xx C) Slowest: y = xx Fastest: y = 7 x D) Slowest: y = ex/6 and y = ex grow at the same rate. Fastest: y = xx TRUE/FALSE. Write ʹTʹ if the statement is true and ʹFʹ if the statement is false. Determine if the statement is true or false as x→∞. 35) x = o(x + 1) 35) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the angle. 36) cos-1 -1 π A) - 2 36) B) 1 π C) 0 D) π -π C) 4 3π D) 4 37) tan-1 -1 37) A) 0 B) 1 38) sec -1 2 π 7π A) ± 2πn, ± 2πn 4 4 C) 38) 7π B) 4 3π 4 D) π 4 Evaluate exactly. 39) cos sin-1 A) 12 13 5 13 39) B) 12 5 C) -12 13 D) -5 13 π 40) cos-1 cos - 3 A) π 3 40) B) - π 3 C) - 6 3 π D) 4π 3 Find the limit. 41) lim sin-1 x x→-1 + A) - 42) 41) π 2 B) -1 D) π 2 lim cos-1 x x→-1 + 42) B) -1 A) 1 43) C) 1 C) 0 D) π lim tan-1 x x→-∞ 43) A) 0 B) π 2 C) - π 2 D) -∞ 44) lim sec -1 x x→∞ 44) A) 0 B) π 2 C) - π 2 D) ∞ Find the derivative of y with respect to x. 6x 45) y = tan-1 5 A) -30 B) 36x2 + 25 45) 30 C) 36x2 + 25 46) y = cos-1 (5x2 + 4) 5 A) 1 + (5x2 + 4)2 C) A) C) 25 - 36x2 D) 25 36x2 + 25 46) 10x B) 1 + (5x2 + 4)2 -10x 1 - (5x2 + 4)2 47) y = sec -1 6 D) 10x 1 - (5x2 + 4)2 6x + 13 1 47) -6 B) 1 + (6x + 13)2 -6 D) (6x + 13) (6x + 13)2 - 1 48) y = tan-1 (ln 2x) 2 A) x(1 + ln2 2x) 6 (6x + 13)2 - 13 6 (6x + 13) (6x + 13)2 - 1 48) B) 1 C) 1 + ln2 2x 7 1 x(1 + ln2 2x) D) 1 x 1 + ln2 2x 1 49) y = sin-1 49) x3 -3x3 A) B) 1 - x6 -3 x x6 - 1 C) -3 x 1 - x6 D) -3 1 + x6 Evaluate the integral. 8 dx 50) 9 - 64x2 ∫ A) sin-1 ∫ 8 x + C 3 8 B) tan-1 x + C 3 1 -1 8 sin x + C 3 3 C) 51) 50) D) dx 2 x 1 + x 51) A) tan-1 x + C 52) ∫ π/2 π/4 ∫ C) A) - π 4 C) π 1 tan-1 x + C 2 D) π 8 53) π 12 B) π 6 C) π 12 dx π 6 B) sin-1 (x + 4) + C 1 -x2 - 8x - 15+ C 2 D) cos-1 (x + 4) + C ∫ cos-1 x dx 55) A) x cos-1 x - 2 1 - x2 + C C) x cos-1 x - D) - 54) -x2 - 8x - 15 C) D) dt t 49t2 - 1 A) -sin-1 (x + 4) + C 55) 1 ln x + C 2 52) B) - 2/7 ∫ 1 sin-1 x + C 2 2 sin 2θ dθ 1 + cos2 2θ -2/7 54) B) π 2 A) 53) 1 8 tan-1 x + C 3 3 1 1 - x2 B) x cos-1 x - 1 - x2 + C D) x cos-1 x + 1 - x2 + C + C 8 56) 57) ∫ ∫ 23x sin x dx 56) A) 23 sin x + 23x cos x + C B) 23 sin x - 23x cos x + C C) 23 sin x - x cos x + C D) 23 sin x - 23 cos x + C ∞ e-x cos 3 x dx 57) 0 A) 1 58) 3 10 C) Diverges 58) B) 4xex - 4ex + C C) xex - 4ex + C D) 4ex - 4xex + C 59) 1 4 1 x ln 8x + x4 + C 4 16 1 C) ln 8x - x4 + C 4 ∫ C) ∫ B) 1 4 1 x ln 8x - x4 + C 4 16 D) 1 4 1 x ln 8x - x5 + C 4 20 dx (x + 5) x2 + 10x + 24 60) A) csc-1 (x + 5) + C 61) 1 10 ∫ x3 ln 8x dx A) 60) D) ∫ 4xex dx A) 4ex - e x + C 59) B) B) sec -1 (x + 5) + C sin-1 (x + 5) + C 5 D) sec -1 (x + 5) + C 5 (sin-1 x)3 dx 1 - x2 A) 3(sin-1 x)2 + C 61) B) (cos-1 x)4 + C C) ln (sin x) + C 1 - x2 D) (sin-1 x)4 + C 4 Find the limit. 62) lim x→0 A) sin-1 4x x 1 4 62) B) 1 C) 4 9 D) ∞ 6 63) lim x tan-1 x x→∞ A) 63) 1 6 B) -6 C) 6 D) ∞ A value of sinh x or cosh x is given. Use the definitions and the identity cosh2 x - sinh2 x = 1 to find the value of the other indicated hyperbolic function. 5 64) sinh x = , cosh x = 64) 12 A) 169 144 65) sinh x = A) 12 13 C) 13 12 D) - 13 12 4 , tanh x = 3 5 4 66) cosh x = A) B) 65) B) 4 5 C) 5 3 D) - 4 5 17 , x < 0, sech x = 8 8 17 66) B) - 289 64 C) 15 17 D) - 8 15 Rewrite the expression in terms of exponentials and simplify the results. 67) cosh 5x + sinh 5x A) e5x 67) C) e5x - e-5x B) 5x D) 2e5x Find the derivative of y. 68) y = cosh x7 68) A) -sinh x7 B) -7x6 sinh x7 C) sinh x7 D) 7x6 sinh x7 C) 2 csch 2x 1 D) sinh 2x 69) y = ln (sinh 2x) A) coth 2x 70) y = 4t3 tanh 69) B) 2 coth 2x 1 t2 A) 12t2 tanh 70) 1 1 - 8 sech t2 t2 B) 12t2 tanh 1 1 C) 12t2 tanh + 8 sech2 t2 t2 1 1 - 8 sech2 t2 t2 1 1 D) 12t2 tanh - 4 sech2 t2 t2 10 Find the derivative of y with respect to the appropriate variable. 71) y = sinh-1 5x 5 A) 2 5x(5x - 1) 71) B) 1 1 + 5x 5 C) 2 5x(1 + 5x) 72) y = 7 tanh-1 (cos x) -7 A) cos x C) ln 1 1 - x2 1 D) 2 5x(1 + 5x) 72) -7 sin x B) 1+ cos2 x sin x D) -7 sin x Evaluate the integral. x 73) cosh dx 4 ∫ 73) x A) sin-1 + C 4 74) x C) 4 sinh + C 4 x D) sinh + C 4 ∫ coth (5x) dx A) ∫ 74) 1 ln sinh 5x + C 5 C) 5 ln sinh 75) x B) -4 sinh + C 4 B) x + C 5 1 csch2 5x + C 5 D) ln sinh 5x + C ln 9 tanh x dx 75) ln 2 A) ln 2 B) 119 18 C) ln 119 18 D) ln 164 45 Solve the problem. 76) Find the volume of the solid generated by revolving the region bounded by the curve y = ln x, the x-axis, and the vertical line x = e2 about the x-axis. A) 2π(e2 - 1) B) π(e - 1) C) π e D) π(e2 - 1) 77) Find the volume of the solid generated by revolving the region in the first quadrant bounded by y = ex and the x-axis, from x = 0 to x = ln 7, about the y-axis. A) 14πln 7 B) 2π(7ln 7 - 6) C) 7πln 7 77) D) 2π(7ln 7 - 7) 78) Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = sin 6x, 0 ≤ x ≤ π/6 about the line x = π/6. 1 2 π2 1 2 1 A) π B) C) π - π D) π 18 36 18 18 11 76) 78) Expand the quotient by partial fractions. 5x + 7 79) (x - 5)(x - 1) 80) 81) 79) A) 8 3 - x - 5 x - 1 B) 32 12 + x - 5 x - 1 C) 8 3 - x - 5 (x - 5)(x - 1) D) 8 3 + x - 5 x - 1 x + 6 2 x + 8x + 16 80) A) 1 2 - x + 4 (x + 4)2 B) 2 1 + x + 4 (x + 4)2 C) 1 3 + x + 4 x + 6 D) 1 2 + x + 4 (x + 4)2 y + 6 2 y (y + 1) 81) 5 6 5 A) + + y y2 y + 1 B) 6 5 + y + 1 2 y 5 6 5 C) - + + y y2 y + 1 5 6 6 D) - + + y y2 y + 1 Express the integrand as a sum of partial fractions and evaluate the integral. 2x + 23 82) dx x2 + 11x + 28 ∫ 83) 84) ∫ ∫ A) ln (x + 4)4 + C (x + 7)5 B) ln (x + 4)3 + C (x + 7)5 C) ln (x + 4) 6 + C (x + 7)5 D) ln (x + 4)5 + C (x + 7)3 8x - 12 x2 - 3x - 4 82) 83) dx A) ln 4(x - 4) + 4(x + 1) + C B) 4ln x + 4 + 4ln x - 1 + C C) 5ln x - 4 - 4ln x + 1 + C D) 4ln x - 4 + 4ln x + 1 + C 8x + 27 dx 3 x + 6x2 + 9x 84) A) 2 ln 1 x - + C x + 3 x + 3 B) 3 ln x 5 + + C x + 3 x + 3 C) 3 ln 1 x + + C x + 3 x + 3 D) 3 ln x 6 - + C x + 3 x + 3 12 Evaluate the integral by first performing long division on the integrand and then writing the proper fraction as a sum of partial fractions. 8x3 + 8x2 + 8 85) dx 85) x2 + x ∫ A) 4x2 + 8 ln x - 1 - 8 ln x + C B) 8x2 + 8 ln x + 1 - 8 ln x + C C) 4x2 - 8 ln x + 1 + 8 ln x + C D) 8 ln x + 1 - 8 ln x + C Express the integrand as a sum of partial fractions and evaluate the integral. -2x2 + 8x + 8 dx 86) (x2 + 4)(x - 2)3 ∫ x 2 1 A) tan-1 - - + C 2 x - 2 (x - 2)2 C) 1 x 1 tan-1 + ln x - 2 - + C 2 2 (x - 2)2 86) B) 1 x 1 1 tan-1 + - + C 2 2 x - 2 (x - 2)2 D) 1 x 1 1 tan-1 - + + C 2 2 (x - 2)2 (x - 2)3 Evaluate the integral. 87) ∫ 6 cos3 3x dx 88) 87) 2 A) 2 sin 3x - cos3 3x + C 3 2 B) 2 sin 3x - sin3 3x + C 3 C) 6 sin 3x - 2 sin3 3x + C 2 D) 2 sin 3x + sin3 3x + C 3 ∫ π/2 cos2 2x sin3 2x dx 88) 0 A) 89) ∫ 4 5 1 5 C) 1 10 cot3 x dx 7 A) 1 1 cot2 x - ln sin x + C 7 14 B) 1 cot4 x sec x + C 28 D) 1 cot4 x + C 28 ∫ 7 sec4 x dx A) D) 2 5 89) 1 cot2 x + ln sin x + C 14 C) - 90) B) 90) 7 tan3 x + C 3 7 B) - tan3 x + C 3 7 C) 7 tan x + tan3 x + C 3 D) 7(sec x + tan x)5 + C 13 91) ∫ 3e2t + 4et dt e2t - 4et + 4 91) A) 3 ln et - 2 + 10(et - 2)-1 + C C) 4 ln et - 2 - 6(et - 2)-1 + C 92) B) 3 ln t - 2 - 10(t - 2)-1 + C D) 3 ln et - 2 - 10(et - 2)-1 + C ∫ sin 6x cos 4x dx A) - 92) 1 1 cos 10x - cos 2x + C 20 4 1 1 B) sin 2x + sin 10x+ C 4 20 1 1 C) sin 2x - sin 10x+ C 20 4 93) ∫ π/15 D) - 1 1 cos 10x - sin 10 x + C 20 20 sec 3 5x dx 93) -π/15 Give your answer in exact form. 2 3 1 A) + ln(7 + 4 3) 5 10 C) 94) ∫ B) 2 3 1 + ln(2 3) 5 10 D) 3 1 + ln(7 + 4 3) 5 10 2 1 + ln 4 5 10 π/2 cos 5t cos 4t dt 94) 0 A) 7 9 B) 10 9 C) 8 9 D) 5 9 Solve the problem. 95) Find the length of the curve y = ln(sin x), π/6 ≤ x ≤ π/2 A) ln( 3 + 1) B) 1 - ln( 3 + 2) C) ln( 3 + 2) 95) D) ln( 3) Integrate the function. 3 dx 96) 5 + x2 ∫ 96) A) 3 ln x + 5 + x2 + C C) B) 3 ln 5 + x2 + C 2 + C 2 x + 5 D) x + ln 3 + 5 + x2 + C 14 97) ∫ dx 2 (x + 25)3/2 A) 98) ∫ + 25 - x2 + C x B) + C D) x 25 25 + x2 x 5 25 + x2 + C + C 81 - x2 dx C) ∫ 25 25 - x2 x 25 - x2 A) 99) x 5 C) 97) 98) 81 x x 81 - x2 sin-1 + + C 2 2 9 x 81 81 - x2 + B) 81 - x2 + C x D) 81x 81 - x2 x + + C 2 81 x 81 - x2 x - + C 2 2 dx x 36x2 - 4 A) 3 sec -1 3x + C 99) B) 3 sin-1 3x + C C) 1 sec -1 3x + C 2 D) 1 sin-1 3x + C 6 Use a trigonometric substitution to evaluate the integral. dx 100) 2 x 1 + x ∫ A) tan-1 x + C B) 100) 1 sin-1 x + C 2 C) 1 tan-1 x + C 2 D) 1 ln x + C 2 Evaluate the integral. 101) 102) ∫ sin 8t sin 2t dt ∫ 101) A) 1 1 sin 6t + sin 10t + C 12 20 B) 1 1 sin 6t - sin 10t + C 12 20 C) 1 1 sin 8t - sin 2t + C 20 12 D) 1 1 sin 6t - cos 10t + C 12 20 ln 5 cosh x dx 102) 0 A) - 19 10 B) 19 10 C) 15 12 5 D) 24 5 Answer Key Testname: PRACTICEFINAL 1) D Objective: (7.1) Determine Inverse from Equation 2) B Objective: (7.1) Determine If Function is One-to-One (Y/N) 3) C Objective: (7.1) Determine Inverse from Equation 4) C Objective: (7.1) Find the Value of Derivative of Inverse 5) A Objective: (7.1) Find Formula for Derivative of Inverse 6) C Objective: (7.2) Express as a Single Logarithm 7) A Objective: (7.2) Find Derivative of Natural Logarithm 8) D Objective: (7.2) Evaluate Integral That Yields Natural Log 9) C Objective: (7.2) Evaluate Integral That Yields Natural Log 10) D Objective: (7.2) Solve Apps: Differentiation/Integration Involving Natural Logs 11) D Objective: (7.2) Solve Apps: Differentiation/Integration Involving Natural Logs 12) C Objective: (7.3) Find Value of Exp/Log Expression 13) A Objective: (7.3) Solve Exp/Log Equation for Variable 14) C Objective: (7.3) Find Derivative of Natural Exponential 15) C Objective: (7.3) Find Derivative of Natural Exponential 16) C Objective: (7.3) Find dy/dx Implicitly from Eqn w/ Log and Exp 17) D Objective: (7.3) Evaluate Integral of Natural Exponential Func 18) C Objective: (7.3) Evaluate Integral of Natural Exponential Func 19) D Objective: (7.3) Evaluate Integral of Natural Exponential Func 20) D Objective: (7.4) Evaluate Logarithmic Expression 21) B Objective: (7.4) Solve Exponential/Logarithmic Equation 22) A Objective: (7.4) Find Derivative of General Exponential 23) B Objective: (7.4) Find Derivative of General Exponential D. Vassilev Answer Key Testname: PRACTICEFINAL 24) D Objective: (7.4) Evaluate Integral of General Exponential Func 25) C Objective: (7.4) Evaluate Integral of General Exponential Func 26) B Objective: (7.4) Evaluate Integral of General Exponential Func 27) D Objective: (7.5) Solve Apps: Exponential Growth and Decay 28) B Objective: (7.5) Solve Apps: Exponential Growth and Decay 29) D Objective: (7.5) Solve Apps: Exponential Growth and Decay 30) B Objective: (7.5) Solve Apps: Exponential Growth and Decay 31) B Objective: (7.5) Solve Apps: Exponential Growth and Decay 32) B Objective: (7.6) Compare Growth Rates 33) C Objective: (7.6) Compare Growth Rates 34) B Objective: (7.6) Compare Growth Rates 35) FALSE Objective: (7.6) Use Big-oh and Little-oh Notation (T/F) 36) D Objective: (7.7) Find Value of Inverse Trigonometric Function 37) C Objective: (7.7) Find Value of Inverse Trigonometric Function 38) D Objective: (7.7) Find Value of Inverse Trigonometric Function 39) A Objective: (7.7) Evaluate Inverse Expressions 40) A Objective: (7.7) Evaluate Inverse Expressions 41) A Objective: (7.7) Find Limit: Inverse Trig Function 42) D Objective: (7.7) Find Limit: Inverse Trig Function 43) C Objective: (7.7) Find Limit: Inverse Trig Function 44) B Objective: (7.7) Find Limit: Inverse Trig Function 45) B Objective: (7.7) Find Derivative: Inverse Trig Function 46) C Objective: (7.7) Find Derivative: Inverse Trig Function 17 Answer Key Testname: PRACTICEFINAL 47) D Objective: (7.7) Find Derivative: Inverse Trig Function 48) C Objective: (7.7) Find Derivative: Inverse Trig Function 49) B Objective: (7.7) Find Derivative: Inverse Trig Function 50) A Objective: (7.7) Evaluate Integral: Substitution I 51) A Objective: (7.7) Evaluate Integral: Substitution I 52) B Objective: (7.7) Evaluate Integral: Substitution I 53) A Objective: (7.7) Evaluate Integral: Substitution I 54) B Objective: (7.7) Evaluate Integral: Completing the Square 55) B Objective: (8.2) Evaluate Integral Using Integration by Parts I 56) B Objective: (8.2) Evaluate Integral Using Integration by Parts I 57) D Objective: (8.2) Evaluate Integral Using Integration by Parts I 58) B Objective: (8.2) Evaluate Integral Using Integration by Parts II 59) B Objective: (8.2) Evaluate Integral Using Integration by Parts II 60) B Objective: (7.7) Evaluate Integral: Completing the Square 61) D Objective: (7.7) Evaluate Integral: Substitution II 62) C Objective: (7.7) Find Limit: Inverse Trig Function II 63) C Objective: (7.7) Find Limit: Inverse Trig Function II 64) C Objective: (7.8) Find Values of Hyperbolic Function 65) B Objective: (7.8) Find Values of Hyperbolic Function 66) A Objective: (7.8) Find Values of Hyperbolic Function 67) A Objective: (7.8) Write Hyperbolic Function in Terms of Exponential Functions 68) D Objective: (7.8) Find Derivative of Hyperbolic Function 69) B Objective: (7.8) Find Derivative of Hyperbolic Function 18 Answer Key Testname: PRACTICEFINAL 70) B Objective: (7.8) Find Derivative of Hyperbolic Function 71) C Objective: (7.8) Find Derivative of Inverse Hyperbolic Function 72) D Objective: (7.8) Find Derivative of Inverse Hyperbolic Function 73) C Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 74) A Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 75) D Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 76) A Objective: (8.2) Find Volume of Solid of Revolution Using Integration by Parts 77) B Objective: (8.2) Find Volume of Solid of Revolution Using Integration by Parts 78) A Objective: (8.2) Find Volume of Solid of Revolution Using Integration by Parts 79) A Objective: (8.3) Expand Quotient into Partial Fractions 80) D Objective: (8.3) Expand Quotient into Partial Fractions 81) C Objective: (8.3) Expand Quotient into Partial Fractions 82) D Objective: (8.3) Evaluate Integral by Partial Fractions (Nonrepeated Lin Factors) 83) D Objective: (8.3) Evaluate Integral by Partial Fractions (Nonrepeated Lin Factors) 84) C Objective: (8.3) Evaluate Integral by Partial Fractions (Repeated Lin Factors)New Section 85) C Objective: (8.3) Evaluate Integral by Partial Fractions (Improper Fraction) 86) B Objective: (8.3) Evaluate Integral by Partial Fractions (Irred Quad Factor) 87) B Objective: (8.4) Evaluate Integral (Product of Powers of Sines and Cosines) 88) D Objective: (8.4) Evaluate Integral (Product of Powers of Sines and Cosines) 89) C Objective: (8.4) Evaluate Integral (Powers of Tan/Cot/Sec/Csc) 90) C Objective: (8.4) Evaluate Integral (Powers of Tan/Cot/Sec/Csc) 91) D Objective: (8.3) Evaluate Integral by Partial Fractions and Substitution 92) A Objective: (8.4) Evaluate Integral (Product of Sines and Cosines) 19 Answer Key Testname: PRACTICEFINAL 93) A Objective: (8.4) Evaluate Integral (Powers of Tan/Cot/Sec/Csc) 94) B Objective: (8.4) Evaluate Integral (Product of Sines and Cosines) 95) C Objective: (8.4) Solve Apps: Arc Length, Volume 96) A Objective: (8.5) Evaluate Integral by Trig Substitution I 97) B Objective: (8.5) Evaluate Integral by Trig Substitution I 98) A Objective: (8.5) Evaluate Integral by Trig Substitution I 99) C Objective: (8.5) Evaluate Integral by Trig Substitution I 100) A Objective: (8.5) Evaluate Integral by Combined Substitution 101) B Objective: (8.4) Evaluate Integral (Product of Sines and Cosines) 102) C Objective: (7.8) Evaluate Indefinite Integral (Hyperbolic Function) 20
© Copyright 2026 Paperzz