Edinburgh Research Explorer Terrestrial analogs and thermal models for Martian flood lavas Citation for published version: Keszthelyi, L, McEwen, AS & Thordarson, T 2000, 'Terrestrial analogs and thermal models for Martian flood lavas' Journal of Geophysical Research, vol 105, no. E6, pp. 15027-15049. DOI: 10.1029/1999JE001191 Digital Object Identifier (DOI): 10.1029/1999JE001191 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Journal of Geophysical Research Publisher Rights Statement: Published in Journal of Geophysical Research: Planets by the American Geophysical Union (2000) General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 16. Jun. 2017 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. E6, PAGES 15,027-15,049, JUNE 25, 2000 Terrestrial analogs and thermal models for Martian flood lavas L. KeszthelyiandA. S. McEwen LunarandPlanetaryLaboratory,Universityof Arizona,Tucson T. Thordarson Divisionof ExplorationandMining, CSIRO MagmaticOre DepositsGroup,Floreat,WesternAustralia Abstract. The recentflood lavason Mars appearto havea characteristic "platy-ridged" surfacemorphologydifferentfrom thatinferredfor mostterrestrialcontinentalfloodbasalt flows. The closestanalogwe havefoundis a portionof the 1783-1784Laki lava flow in Icelandthat hasa surfacethatwasbrokenup andtransported on top of movinglava during majorsurgesin the eruptionrate. We suggestthata similarprocessformedthe Martianflood lava surfacesandattemptto placeconstraints on the eruptionparameters usingthermal modeling. Our conclusions from thismodelingare (1) in orderto produceflows> 1000 km longwith flow thicknesses of a few tensof meters,thethermophysical propertiesof the lava shouldbe similarto fluid basalt,and(2) the averageeruptionrateswereprobablyof the order of 104m3/s, withtheflood-like surges having flowrates oftheorder of 10s- 106m3/s. We alsosuggestthatthesehigheruptionratesshouldhaveformedhugevolumesof pyroclastic depositswhich may be preservedin the MedusaeFossaeFormation,the radar"stealth" region,or eventhe polarlayeredterrains. 1. Introduction The objectiveof this paper is to provide initial qualitative and quantitativeinterpretationsof new data on Martian flood lavas. The Mars Orbital Camera (MOC) on board the Mars Global Surveyor (MGS) spacecrafthas returnedspectacular new images of Mars [Malin et al., 1998]. We were particularlyinterestedin imagesof the Martian flood lavasin order to comparethe emplacementof Martian and terrestrial flood volcanism. Flood volcanism is one of the most significant crustforming processesidentified on Mars [e.g., Greeley et al., 2000; Greeleyand Spudis,1981], and the extremepaucityof cratersin someof the imagesof the flood lavassuggests that this style of volcanismmight plausiblypersistto this day on Mars [Hartmann, 1999; Hartmann et al., 1999; Hartmann and Berman, this issue]. Understandingthe eruptionsthat formedtheseflood lavasis a criticalstepin understanding the evolutionof the surface,interior,andatmosphere of Mars. Before proceeding,we shouldnote that we use the term "flood lava" to denotea packageof sheet-likelava flows that inundatesa large region, producinga smoothplain without •-100 m tall constructs. This use of the word is in line with that presentedby Greeleyand King [1977] and its application to terrestrial continental flood basalts [Bates and d•ackson, 1984] andis essentiallyidenticalto the useof the term "mare" on the Moon (but withoutthe requiredlow albedo). However, someother workershave used"flood lava" to simply refer to long lava flows with no clear channels or tubes [e.g., Cartermole,1990]. Copyright2000 by theAmericanGeophysical Union Papernumber1999JE001191. 0148-0227/00/1999JE001191509.00 Some of the most recentand bestpreservedflood lavas lie in eastern Elysium Planitia (the Cerberus Formation of Plescia [1990]) and in a portion of Amazonis Planitia centeredat 30ø N, 160ø W [McEwen et al., 1999b]. These two regions are connectedby Marte Vailis, which is also partially filled by flood lavas. The surfaceof the Cerberus plainsrecordsa complexhistoryof volcanic,fluvial, impact, tectonic,aeolian,and possiblylacustrineand glacialprocesses [e.g., Mouginis-Mark et al., 1984; Tanaka and Scott, 1986; Plescia, 1990; Scott and Chapman, 1991; McEwen et al., 1998, 1999c]. In this paper we focus solely on the best preserved(andpresumablyyoungest)volcanicfeatures. Well-preservedflood lavasof similarappearance (although probably older) are also presenthigh on the TharsisBulge, near TharsisTholus. Layers exposedin the walls of Valles Marineris are also likely to be yet older flood lavas [McEwen et al., 1999a]. Figure 1 showsthe locationof thesefloodlava exposureswith respect to other major features on Mars. Crater countingand modelssuggestagesof about 10 Ma for the youngestof the flows in the CerberusPlains [Hartmann and Berman,this issue]. However, MOC imagesalso reveal that there are locationswhere the lava is eroding out from beneath the Medusae Fossae Formation, which may have protectedthe lava from small impact craters. While many processescan complicate the age estimates from crater counts, the crisp, undegradedmorphology of the flows supportsthe idea that theseflood lavasare geologicallyvery young. Together,the recent flood lavas appearto cover an areaofabout107km2,roughly thesizeofCanada [McEwen et al., 1998]. The minimum thicknessof the Cerberusdeposits is estimated to be in the hundreds of meters, and the new MOC images supportthe estimate by Plescia [1990] that individualflow frontsare only of the orderof 10 m thick. 15,027 15,028 KESZTHELYI ET AL.' MARTIAN These flood lavas have a distinctivesurfacemorphology dominated by plates and ridges [McEwen et al., 1999b] (Figures2-9). The platy-ridgedmaterial is interpretedto be lava becauseit is boundedby lobatemarginscharacteristic of lava flows (Figure 4). At high spatial resolution(2 to 20 m/pixel), theseflows exhibit a complexsurfacemorphology interpreted to include rare channels (Figures 3 and 4), common rafted crustal slabs(Figures 2, 3, 5, 6, 7, and 9), ubiquitous pressure ridges (Figures 2-9), some ponded surfaces(Figures 5-7), and possiblesqueeze-ups(Figures2 and 5-7). Coherentslabsof crustappearto rangein sizefrom a few hundred meters to a few kilometers.' Ridges are typically only tens of meterswide but up to kilometersin length. Most ridges are interpretedto have formed at the edgesof plates as they are rammed into each other during emplacement(i.e., pressureridges). Other ridges may have formedby liquid lava oozingup throughextensionalcracksin the plates(i.e., squeeze-ups). These flows are remarkably flat, with about 400 m of vertical elevation over 1500 km of lateral distance(0.027% slope) [Smith et al., 1999]. However, the region is radar bright, implying a rough surface on the decimeter scale [Harmon et al., 1992, 1999]. Vents in the flood lava regions are difficult to identify, probablyas a result of burial by the flows, their small size, and/or rapid removal of the relatively fragile vent structures. However, the CerberusRupes fracturesand nine low shields on the western side of the Cerberus Plains were identified as likely ventsfrom Viking data[Plescia,1990;Edgettand Rice, 1995]. The most recentMOC imagesshow small lava flows emanatingfrom both sides of some of the CerberusRupes fissures,confirmingthat they indeedservedas volcanicvents [McEwen et al., 1999c]. However, there is still no conclusive proof that most of the large flood lavas were fed from CerberusRupes. Also, the CerberusRupesfracturescut all the lava flows, indicatingthat it has been tectonicallyactive morerecentlythanit hasbeena volcanicvent. One of the ongoinglimitationsin workingwith the Martian flood lavas is our inability to trace individual flows. The Viking datado not have the resolutionto allow flow margins to be confidently traced. The MOC data cover only a tiny fraction of the Cerberus Plains, allowing only extremely discontinuoussampling. Our bestestimatefor the extentof a singleflow is shownin the lightestshadingin Figure 1. This area correspondsto the brightestradar returnsreportedby Harmon et al. [1999]. It also follows the local topographic gradient away from the presumed vents along Cerberus Rupes. It is relatively dark in the Viking images,and the freshestlooking lavas in MOC imagesfall within this area. Also, the radar bright area terminatesat the samearea as the flow terminusseenin Figure4. On a smallerscalethe flows appearto have 100- to 1000m-size lobesat the margins,but the largersheetsare generally not capturedin any singleMOC frame(3-10 km wide). From the small areassampledby MOC and the subtlemottling in the Viking images,we tentativelyinfer that both the widths and lengthsof the individualsheetsare of the orderof tensof kilometers. Only a few sheet-likelobescan be seento be less than a kilometerwide (e.g., Figure 4). However, if previous suggestions for vent locationsare correct,the lavasmusthave generallyspreadfor >500 km and may have exceeded2000 km in somecases. This impliesthat eachflow is composedof a greatnumberof smallersheet-likelobes. FLOOD LAVAS .. ., .,.,,. :i:; 5• .,%• ß.:.• ..,.•. ... •:• •.•(½•.. ß ...... •:•.:..: ..:.•½::.•;•:•::s•....,-.• ..•:•:•...e• .-.,. :•:**..:.•,•;•. . s,:•:•:.• ...::......•:•::.:•,:,•a. :•½: .'• .... ::-,•: •::• • • •;:• .................... •;•:.•:::• ::::::::::::::::::::::::::::::::::::::: ..>:•:.:•:•;:•,•::•',-•:' .....-..'..,.: .• .:%;.•:•t•:;• ..... •:• ...... .' .:: ;"::•*•: .............. ,..?:., •*'* $;:•;:• :• :::. ,,• •,-, .•::e•.::.: [-/•............ ........•, ................. ..: ......... •..-.-,......... :...e?. :-:;,:.•;•;:•.:.:.,;•.• :;:.½,• .:,: .... KESZTHELYI ET AL.: MARTIAN FLOOD LAVAS 15,029 Figure 2. MOC imageSP1-21905andViking contextimagefrom ElysiumPlanitiacenteredat 5.7øN,209.0øW. In this andthe followingMOC images,northis up, andthe Viking contextis froma basemapmosaic[Davies,et al., 1992]. Note raftedplatesof lavathatcanbejigsaw fit in a patternconsistent with flow to theNW or SE. The wakebehindan obstaclein theNE cornerof the image(arrow)showsthatthe flow directionwasactuallyto the NW. Larger,curvingridgesin the platesare probablypressure ridgesformedduringthe collisionof plates. Thin, involuteridgeswithin the brightermaterialbetweenthe platesare probably squeeze-ups of lavaformedafterthelavasurfacestagnated. 2. Terrestrial Analogs Without well-studied terrestrial analogsto provide a qualitativemodelfor the Martianfloodlavas,it is impossible to pin downthe physicalprocesses to includein quantitative lava flow models. Currentlava flow modelsrequiresome basicassumptions abouthow the flow advances(e.g., tubefed versus channel-fed). Even empirical relationships betweeneruption parametersand flow dimensions[e.g., Walker,1973; Pieri and Baloga, 1986;Kilburn and Lopes, 1991] are criticallyaffectedby the styleof emplacement.In this sectionwe will showthatportionsof the 1783-1784Laki lava flow in Icelandmay be the bestavailableanalogto the Martian flood lavas. 2.1. Continental Flood Basalts The Martian flood lavas derive their name from their obvious similarities to terrestrial continental flood basalts (CFBs). Continentalflood basalt provincestypically cover morethan106km2 witha lavapilekilometers thick[e.g., Macdougall, 1988]. When not deeplyeroded,they are also characterizedby flat, plateau-like,topography[e.g., Greeley and King, 1977]. The best preservedand most extensively 15,030 KESZTHELYI ET AL.: MARTIAN studiedCFB provinceis the ColumbiaRiver Basalt Group FLOOD LAVAS lavas have radiometricagesbetween 17 and 6 Ma, but the (CRBG). TheCRBGconsists of 174,300ñ31,000km3 of majorityof the lava was eruptedbetween16.5 and 15.3 Ma dominantly basaltic-andesitelava covering 163,700 ñ5000 [Tolan et al., 1989]. Comparisonto other CFB provinces km2of area.These lavas aredivided intoapproximately 40 showsthat most CRBG lava flows are similar to the majority stratigraphicunitsthat contain>300 individual"flows". The of lava flows found in other flood basalt provinces [e.g., Hooper,1982;Selfet al., 1998]. Although continentalflood basalt provinceshave been studiedextensively,their flows are not sufficientlywell preserved or exposedfor the originalsurfacemorphology to be directlyobserved.Instead,the surfacemorphologymust be inferred from observationsmade in crosssectionsalong natural and artificial cliffs. Such examination of the CRBG lava flows indicatesthat they were primarily emplacedas inflated pahoehoe lava flows [Self et al., 1997, 1998]. However, it is importantto note that only one unit, the Roza Member of the WanapumFormation,has the combinationof exposureand preservationthat has allowed the detailsof an entire flow field to be described[e.g., Shaw and Swanson, 1970; Swansonet aL, 1975; Martin, 1989; Thordarson, 1995; Thordarsonand Self, 1998]. Most other CRBG flow fields are either too poorly exposedor too extensivelyerodedfor suchdetailedstudy. Thus there is a continuingdebateabout the role of inflation in the emplacementof otherCRBG lava flows [e.g., Reidel, 1998]. Other terrestrial flood basalt provinces (including the Deccan, Entendeka, Kerguelen, Parana,and Keewena)alsoappearto be dominatedby inflated pahoehoe [Self et al., 1997, 1998; Jerram et al., 1998; Keszthelyi et al., 1999; Frey et al., 2000]. However, a substantial fraction of flows in the CRBG and other flood basaltprovinceshave brecciatedflow tops that do not fit in the aa versuspahoehoecategorization[Macdonald,1953;Self et al., 1998;Frey et aL, 2000]. Based on the surface morphology of large inflated pahoehoe flows in Hawaii, New Mexico, Australia, and elsewhere[cf., Theilig and Greeley, 1986; Keszthelyiand Pieri, 1993;Hon et al., 1994;Stephenson et al., 1998;Self et al., 1998], we infer that a substantialportionof the surfaceof CFB lavas consistsof a convoluted set of lobes, tumuli, and plateaus,all inflatedto aboutthe samelevel. Sucha surface has a distinctive mottled appearance at 1-10 m/pixel, especiallywhen partially infilled by aeoliandeposits.Figure 10 shows this surface morphology of terrestrial inflated pahoehoe lava flows in a variety of settings. This morphology is diagnostic of inflation; no other style of eraplacement produces thismorphology. Do we expect inflated flows to be common on Mars? Inflated flows requirethe presenceof a coherentuppercrust Figure 3. MOC imageSP2-38804and Viking contextfrom Matte Vailis centeredat 6.9øN, 183.0øW. Note platesin the lava flow consistentwith the centerof the a channelwinding North. The parallel ridgesin the top of the imageappear more similarto compressional pressureridgesformedby the collisionof solid platesthan to leveesformedby overbank depositsof liquid lava. The streamlinedfeature SE of the center of the image appearsto be sheetsof crustpiling up againsta topographicobstacle,leavinga wake in the crust. This type of wake is seenon a muchsmallerscalein Hawaii whenchannelizedlava piles againsta tree. The groovesseen in the Laki flow field in Iceland are more similar in scale(see Figures12 and 13). KESZTHELYI ET AL.: MARTIAN FLOOD LAVAS 15,031 Figure 4. Cutoutwindowsfrom MOC imageSP2-40703andViking context. Imagecenteredat 19.2øN,174.6øWinsideMarte Vailis. Lower (left) cutoutwindow showsthe terminusof a flow lobe that was confinedto preexistingchannelspresumedto be fluvial in origin. The marginsof the flow aretypicalfor basalticlava flows. The albedomarkingswithinthe flow are suggestive of multiple channelsthat did not have the opportunityto drain. The flow marginsand surfaceappearto be only minimally modifiedby postemplacement geologicprocesses.The upper(right) cutoutwindowshowsthe marginof a flood lava flow with smoothsheet-likechanneloverbankdepositsand disruptedchannelsurfaceconsistentwith flow to the NE. Also of interestare the small fluvial channelsthat the lava embays. The marginof the flow is partiallycoveredby fluvial and/oraeoliansediments. Numberson contextimageare latitudeandlongitude. and conditions under which it is easier for the lava to raise the crustthanto advanceforward. The major differencebetween the Earth and Mars is the lower gravitationalaccelerationon Mars. This decreases both the force drivingthe advanceof the flow and the force holding the crust down. Thus the reducedgravity shouldsignificantlyenhancethe tendencyof lava flows to inflate [Keszthelyiand Self, 1998a]. The other major difference between the Earth and Mars is the •100 :.............. ..•., .:•. .•:.• .::'. :.' '"•i• :.'"'• -- ;• ..:•,.. ,t, .....** .•-• :4::.•..: .:...'.•:•;•.• .'•, -•:;**.... **:,:,:, ' ' ":a•.•?'.:'*,. ' •::.. ,..:,. •:.•'::..... * .:.: .............................. '" :•?' .....:•:..• :.....: ...... •;•:....•:: ......... :.......... .** "* --.:, ' .:-.-..,, ..:,:, ...,.......:,....•... ,..** ::..:.:**. ::•:. :::,.'::•:• .½:*':'"::::. ::...,• ..... ,..";:::;**•:.. :*';'"..a:'.• ....' ', ................... *''":'"'•::• :.:..•..;•,.::... ;.,...:•:, - .•,¾ ': .......... .. •:. '* .:-:?. :., ':'•::*:: ,.,,,:;:.:: "•:;:$:.::.,"':':•,...::. ::-:½::** .';..: ......... ..:. ..... -.:...'::::: ::•,.. .• .... .• :..•. :•:'• ":',-:':• •:::....•: .... :.::•:.-:,..-.:..:::• ..... ,:.;: .: :::::: ß .::;•, .... :.•:"....., '", .:• .... ...... ß :•:- .a:.:.:.',•':..:::•:-'•:: :? ,.,..... .,,.,.-.... •..: ..... •-•:: '" ,.,...... .:.•:a, ß ........ .... ,.......... -.•' ..:..,.:.'." 4..:: ""-:-'.--: ..... "::X:":"::. '-_*:., .: ":.::; ......... "'..: .... •.-..., ....... :-:;.': :..:: ....,- :.,............•.:?..,.....-::<;:..,?:;,:.. :'";•; .,-.;.-. .:::.:•a *.* :-:',;:'. ':*•:::'"•:. :';;j : :.•'.:•...*::-:::: '%, •'•.*.:;•:• -'"" ., 4:...•;• ½..::•;::.,:•*.".....::'":-•*•,• ,..... q:.*'.'• :.::. :::.:,..... .•-::'::•--a ': :..,• :'--; "%, •:::* "4-, a ..: ',;:..., ::•:.:;.;•'::e•:::' ,?..'•;':--*"'":':•::•:: •:"' •-•;:*,......;F'•*:*;:" .:½•.:,:'• :•:" S:• ½:. :::::::::'• ............. :.':•.':':, 'G :.:'• "''....... :...•:•: :;:'•i ::::.:•:.•::,.::::':•:'::•"::::.::'"' :':•:';:::: -•*::': :-,":: '::'-"::::P/•:• ':'.;::::"::'/:'""*::;:::½ '"::::' ':.::: ..... : :::. ..... :. -...., .::--:..:::-:'.:': :.'.'. ....... ß" '-" ..Z•;::%':'"'"':4:• '........ .2' :-.. ' ::: ':;."-' • -.•::'" ....•;,:.:.'-½..:• :--½'• ............ ..:• . ...:-:.',-:'•..ß **:...., '";....•,:.-;:•:':;'•-.....'..:. :--:, ::' • .::.:..;. , .,. -.. .. :':.:; ,.-...½, .., ,. ::?•:..' ...:, , "-.... .;::., • r • •* ß ..:. '.?: .... .-.. ...,,-'.•: -:.:....,.-.:<•r' ..:...........j ::..:::'.::: ....... ::::::::::::::::::::::::::::: Figure 5. Cutoutwindowsfrom MOC imageSP1-24203andViking contextfrom AmazonisPlanitia. Imagecenteredat 24.6øN, 163.6øW. In the upper(right) cutoutwindow,notethe ridgeson the plateson the lava surfaceat the top of the image. Our interpretationof the formationof this platy-ridgedsurfaceis the following:First,the ridgesformedas compressional hummocks perpendicular to flow direction. Theseridgesdo not appearto be inflationfeatures(seeFigure 10) and insteadare similarto compressional pressureridgesformedin brecciatedflow tops(slabpahoehoe, aa, etc.). We suggest that belowthe brecciatedflow top, the lava solidifiedinto a coherentslab. A later surgein lava flux then raftedpiecesof this crust,translatingand rotating blockswith ridgeson their surface(see Figure 15). In the lower (left) cutoutwindow the sameflow exhibitsa much smoother appearance.The randomorientationof the web of thin convolutedridgeson the smoothlava surfacesuggeststhat they are squeeze-ups of moltenlava comingup betweencracksin the cruston a pondedarea. Pressure ridgeswouldbe expectedto showa clearpreferredorientationperpendicular to flow. KESZTHELYI ET AL.' MARTIAN FLOOD LAVAS 15,033 .: ß ... Figure 6. MOC imageSP2-42604andVikingcontextfromAmazonis Planitiacentered at 25.7øN,167.0øW.Groupsof parallel ridgesare probablycompressional pressureridgesof disruptedcrust,and more sinuous,isolatedridgesare probablylarge squeeze-ups in the flat pondedsurfaces.Localflow directionis ambiguous, but motionto the SW is mostconsistent with the ridgeorientations. times lower atmosphericpressureon Mars. This shouldlead to reducedconvectivecoolingof the lava surfaceand slower crustgrowthon a lava flow. However,the initial formationof a crust is governedby thermal radiation,which will be very similar on Earth and Mars [e.g., Wilson and Head, 1994]. Overall, the conditionson Mars appearto be very conducive the resolutionneeded(<<10 cm/pixel) to identify diagnostic features (tumuli, inflation clefts, lobe boundaries,vesicle distribution,etc.) in the Martian cliffs. Instead,we makethe assumption that mostof the Martianflood lavasthroughtime have had surfaces like the recent flood lavas. Our examinationof the MOC imagesof the exposedsurfacesof for the formation of inflated flows. What remains to be seen the well-preservedMartian flood lavas suggeststhat only is if the eruptionson Mars were alsoin the regimethat forms isolated segments of their margins might be inflated inflated flows. pahoehoe. The raftedplatesthat characterize the Martian Locallyhigh strainrates(relativeto the lavaviscosity)lead flood lavasare not seenon inflatedterrestrialpahoehoeflows to tearingand disruptionof the crust[Petersonand Tilling, and insteadsuggesta disruptedcrustthat translateslaterally 1980]. In Hawaii, aa flows with disruptedcrustsbegin to during emplacement. Thus, while the scale and gross format effusion ratesaboveabout15 m3/s[Rowland and physiography of theterrestrialandMartianfloodlavasappear Walker, 1990]. However, the Roza Member of the CRBG is similar, the more detailed flow morphologyrevealedby the an inflated pahoehoe flow that was emplaced at MOC images suggeststhat they formed by significantly approximately 2000m3/s[Thordarson, 1995;Thordarson and differentprocesses.Thereforewe look for otherterrestrial Self, 1998]. In the caseof the Roza eruption,the lava front analogsto providethe neededinsightinto the emplacement was tens of kilometerswide, so the muchhighervolumetric processes of Martianfloodlavas. effusion rate did not translateinto rapid flow rates or high strain rates. Thus high volumetric effusion rates, by 2.2. The 1783-1784Laki Eruption themselves,do not rule out emplacementas inflatedpahoehoe sheet flows. The eruptionin 1783-1784 at Laki, Iceland, produceda The layereddepositsseenin the walls of Vailes Marineris largeflow field thathasmanysimilaritiesto CFB lavaflows, appearsimilar to the layersof lava flows commonlyseenin but alsohasareaswith a morphologythat is strikinglysimilar CFB provinces[McEwen et al., 1999a]. However, we lack to the Martian flood lavas. The Laki eruptionis the largest 15,034 KESZTHELYI ET AL.: MARTIAN FLOOD LAVAS .. •;;,: :...,•'•.•:;*.'..':.'?":' ........ :.;,... ... .......... ß .:..-;:"¾....:, .....-,::,.? ...,..... ..:':.,'..' .... ,::::, .... ;...S•, ' •:.. '.• . .... Figure7. MOC imageSP2-53504 andVikingcontext fromAmazonis Planitia, centered at 23.9øN,164.3øW.Roughridged areasandthemostprominent linearridges appear tobepressure ridges of brecciated material.Smoothareasappear to beponded lava.In general, theroughareas matchthedarkmottles in theVikingcontext images.Themargin of theflow,whereit abuts the hillsto thenorth,is notmorphologically distinctfromtherestof thelava. Dunesalongthe flowmarginandthe sparse craters suggest thatthisflowmightbeslightly olderthansomeoftheElysium Planitia flows.Flowdirection isambiguous, withnoclear interaction between the lava flow and the older hills. KESZTHELYI ET AL.: MARTIAN FLOOD LAVAS 15,035 Figure 8. MOC image SP2-54304 and Viking contextfrom lava plains near TharsisTholus, centeredat 17.0øN, 84.1øW, showingolder lava surfacewith ridgesand grooves,similarto thoseseenon the recentflood lavasin Elysiumand Amazonis. Despitesignificantaeoliancover, including>100-m-longdunes(arrows),theseridgesare readily recognized. However, the marginsof platesaregenerallyobscured. historicaleruptionand the detailedwritten recordsof the effusionratesappearto have reachedvaluesas high as 8700 eyewitness observationsof this eruption (e.g., J. m3/sforshort periods during theearlypartof theeruption Steingrimsson, writtencommunications, July 4, 1783 and [Thordarsonand Self, 1993]. November24, 1788;O. Stephensen, writtencommunication, Ten eruptiveepisodesfed fissuresegments1.6-5.1 km in August15, 1783)areparticularly helpfulin understanding the length along a fissure system with a 27 km total length eruptive historyandbehavior of thelava. (Writteneyewitness [Thordarsonand Self, 1993]. Generally, only one fissure reportsare publishedin Icelandicby Einarssonet al., 1984 segmentwas active at any given time, but for a shortperiod and the accountof Jon Steingrimssonis translatedinto sectionsof three fissure segmentswere active over a total English[Steingrirnsson, 1998]). Also, while the Laki flow distance of-10 km [Thordarson and Self 1993]. The has been carefullyexaminedby severalIcelandicworkers eruptionreleased350 Mt of CO2, 240 Mt of H20, 120 Mt of [e.g.,Jakobsson,1979;Oskarsson et al., 1982;Thordarson, SO:, 15 Mt of HF, and7 Mt of HCI [ Thordarson et al., 1996]. 1990;Thordarson and Self, 1993],little is published on the The fluorine in particularwas deadlyto the local livestock flowmorphology. Muchof thefollowingdescription is based (primarily sheep),which led to a massivefamine that killed onpreviously unpublished fieldworkby T. Thordarson. approximately 20% of the population of Iceland The eruption startedon June 8, 1783, and lasted until [Thorarinsson, 1979]. The tops of the buoyanteruption February 7, 1784,erupting 15.1km3 of basalt(dense rock columnspenetratedthe tropopause,and SO2was distributed equivalent (DRE)) that advanced>60 km from the vent acrossthe Northern Hemisphere[Woods, 1993]. The Laki [Thordarson andSelf,1993;Thordarson et al., 1996](Figure eruptionwas associatedwith an unusuallycold winter, with 11). About10%of the mass(and>50% of thevolume)was the Danube River freezing over at Vienna and rafted ice deposited aspyroclastics. Of the lavaflows, 60% (by mass filling the Mississippi River at New Orleans [Thordarson, andvolume)was eruptedin the first 1.5 monthsand 90% in 1995; Thordarsonet al., 1996]. thefirst5 months [Thordarson andSelf,1993]. Theaverage The lavasflowedawayfromthe fissuresystemandpassed effusion ratefortheentire eruption was730m3/s[Thordarson throughtwo river gorgesbeforefanningout on the coastal and Self, 1993], not muchhigherthan historicalMaunaLoa plains(Figure 11). Field mappingandexaminationof aerial eruptions[Rowlandand Walker,1990]. However,basedon photographsshow that the majority of the lava formed theeyewitness accounts of therateof advance of lavasurges, inflatedpahoehoe. However, one sectionof the distalend of 15,036 KESZTHELYI ET AL.: MARTIAN FLOOD LAVAS Figure 9. MOC image SP2-54303 and Viking contextfrom lava plains near TharsisTholus, centeredat 14.2øN, 83.7øW, showingolder, degradedexampleof flood lava with similar ridged morphologyas the more recent Elysium and Amazonis examples. Groovesin the crustsuggestflow to the NW during the initial emplacement.However,the crackindicatesopeningto the NE, suggestingthat the flood-like breakoutfrom this lobe movedin that direction. Note that in theseimages,there is no correlationbetweenthe lavamorphologyandthe albedomottlingin the Viking image. the flow field is composedof arcuatepressureridges,rafted crustalplates,and longitudinalgrooves(Figures12 and 13). The lava in this areais coveredby a few centimeters of moss, but the underlyingflow top can be seen to be brecciated, forming a lava surfaceunlike any commonexamplesin Hawaii. The closestHawaiiananalogto thisdisrupted crustis slabpahoehoe,a form of lava transitionalbetweenpahoehoe andaa [Macdonald,1953]. We inferthatthe raftedcrustalplatesinitiallyformedon a relativelystagnant flow andweredisrupted andtransported by a latersurgein the flow rate. This is directlyanalogous to the manner in which the ice cover on a partially frozen river breaksup during springfloods ("undanhlaups" in Icelandic). Recordedobservationsof the flows advancingthroughthe areasshownin Figures 12 and 13 includereportsof the lava surgingforwardat 2-5 timesthe averagerate for severalhours [Steingrirnsson, 1998]. Based on field work and examination of the aerial photographs(Figures 12 and 13), we conclude that the groovesin the flow surfaceare wakes left in the brecciated crust as it translatedpast isolated obstacles. The arcuate ridgesappearto be locationswhere the brecciatedcrustwas compressedas it ponded before overtoppingtopographic ridges. This part of the Laki flow field is underlain by KESZTHELYI ET AL.' MARTIAN FLOOD LAVAS 15,037 (a) ;•;;:•,:• •:,•';•;•...:,: ......•:;::•;;;:;• :,,.. ;•::;.;•;:.½•;;;;,•½.::,-?.. •:..... %.. '":•:..;--:,::•::.i:; .:'i;;;•;•:;::i;" .:;i":' •;::•-:•...... '::;•'.o. ;:•::::-:j•':;;•Z :•:•---*-'•---•:•'•'•-4•:,:• ................... '-:","- ........ ':'"•:•:::'?:•;•;•:•;;•;-•::•: ½ :%'-: •:•.:•:-:•,•..;•:•..;::,• •,;:½ •;;:•;;:(•...:½*:-•I'2Z'•;;:•'• ""'•""• --------•-••.•-;-:•-••: ..... .•-•..•••:•.•. . . ;::;•;;::::-•::;:E•:,:%•: •:•:':'•½'•½•J;&., -:'•':•;-•::::,.::'• .... •:•'-•-:' :::::. --•½:• •:::...:,.-;;::•<.:•.• ,=•:•:•.:--.-:.•, ..:•:-•...½:;:.,::•.• .• .........½...½--::,•.½::.::;•. •:..•.:•-, :,:½;'.;•½ '*- •4:: ..":'•'.;"•':•:• ?%{ :,:• :½. ::-:-•,---.•.--•,:•;•:•::::,...-•-.:..•:•;::•:..--.:.,.4::.• ...... .;::•,•s.•,•...,.:.•,.,.. •::•:.-.-:•:•,•:..•.. :.....• •.:.::•,,,:..,. .......... • -. '•:•.'"<•½:": :;•::½•:•:'•,:.: -•.':>'•::.(;•-' ............. :•-½•':';': .•:..::•.•:•:•.:::..:. -,½ ':'•: ,::;...:;•,•!:• ..... ""-•;.._•.:..':%;•:( ....... ,•;•...:½•...:;'.•.•:•;•-----•;•:•.•:,: •..-,z•;'.;;-":'•:'•-'•.•..•;•: "•:•;½•;:;•T*• ;•::•,:•:•:½"•"f•:• •"•-:.. '"';½•;::•.:L.½•:•:-•;;;;::;•;.;:½. ::•%•:4:..•:•;;•:J-• ' ::"";"• •..•** ...... •4:• ........... • ....... ........ ,.. :.•.• ............ •:.....•:::::,:..•.: .:•.•:•:.j;:•:.:....•.>•..:.•:•;•4•(.• '.'.:•;---:-½. ;.-'•:?;.. -.- .:.•..• ._•:•-•..:•..•.½•" -.:-•,:-•-*:% ...:;.;.;-.•-.' • '• ...... Figure 10. Examplesof terrestrialinflated pahoehoeflow surfacemorphology. (a) Aerial photographof SE corner of the Macarthy'sflow field, New Mexico. Note largeinflationplateauin centerof imagewith inflationpits. Smallerinflationfeatures on hummockypahoehoesurfacesappearas mottling at this resolution. (b) Aerial photographof SE portion of Carrizozo flow field, New Mexico. Note the largeinflationplateaualongthe flow marginwith inflationpits andthe moremottledappearance of the hummockyportions. Dark delta-shaped featuresare smallpatchesof slabpahoehoebreakingout from the inflatedpahoehoe lobes. (c) Aerial photographof SE portionof the Laki flow field, Iceland. Note the largeinflationplateauin the centerof this lobe andthe more hummockytextures. Highway 1 crossesthe lava in this image. (d) Obliqueaerialphotographlookingsouth over the west end of the Pisgahflow field, California. Note mottled patternof the hummockypahoehoesurfacemade more visibleby partialfilling with aeoliansands.Truckson Interstate 40 areshownfor scale.Photocourtesyof BruceC. Murray. rootlessconesin the older (934 A.D.) Eldgja flow field. These cones occur both in lines and in isolated clusters of cones, making them the only likely candidate for the topographicobstaclesthat the Laki lava encountered. The raised edgesand streamlinedshapeof the groovessuggest that the brecciatedtop of the lava had a significantyield strength,while pahoehoebreakoutsshow that the interior remained fluid. KESZTHELYI ET AL.: MARTIAN FLOOD LAVAS 15,038 ... . . ... -1'.: .km: . -.--.:....-: >..m.,-.::..:-...:-:-.--.-....::............. - .:.- -. :-- .- Figure 10. (continued) Thissurging andautobrecciating modeof emplacement has beforenarrow channelsor tubesevolvedwithin the flow). not beendescribedin Hawaii,but may applyto the -•20%of the flows in the Columbia River flood basalt provincethat Thesenear-ventflowsarecharacterized by highlocaleffusion ratesandhot,gas-rich lavaswithrelatively lowviscosities. haverubblyflowtopsandsmooth pahoehoe-like flowbases Where the flows have ponded,their surt•tcesare also by veryshallowslopes (<<1ø). [Selfet al., 1998]. It mayalsohelpexplaintheenigmatic characterized brecciatedflows seenon the KerguelenPlateau[Freyet al. 20001. In Hawaii, longitudinalgroovesand pressureridgesare 3. Modeling The observations from Iceland,andto a lesserextent,from largelyabsent withinlavaflows. However, we havefound Hawaii and continental flood basalt provinces,strongly somepiecesof raftedcrustthataretensof metersin scale. suggest that the Martian flood lavaswereemplaced assheet Raftedpiecesof crustarevisiblealongthe Southwest Rift flowswithintermittent, surging advances. In thissection we Zone of Kilauea and in the summit caldera of Mauna Loa thisqualitative emplacement modelin moredetail (Figure14). The raftsaremostlyconfined to thenear-vent describe to placequantitative constraints oneruption faciesof lavaflows(i.e., thebroadsheets of highlyvesicular andthenattempt lava within a few hundred meters of the vent that formed parameters. Surging emplacement is inherently difficult to KESZTHELYI ETAL.'MARTIANFLOODLAVAS 15,039 Figure 10. (continued) model andwelackcritical measurements such asthelength crust.Thesecond involved opensheetflowwitha disrupted andwidth ofindividual outpourings. Therefore it iscurrentlyandmobilecrust.Thethermalmodels fromKeszthelyi and impossible to produce a quantitative modelreplicating the Self [1998b]are readilymodifiedto Martianconditionsand eraplacement ofa specific Martian floodlavaflow.However, candescribe eachof these twodistinct flowregimes. it is possible to showhowtheflowswerenotemplaced. 3.2.1. Insulated sheet flow. The thermal model for Elimination ofthephysically impossible provides surprisingly insulated sheet flowspresented byKeszthelyi andSerf[1998b] usefulconstraints on the formationof the flows. is a simplemodificationof the thermalmodelfor lavatubes presented by Keszthelyi [1995]. Bothmodels involvesteady 3.1. Qualitative Model stateconductive heatlossthroughthe uppercrustandheat The brokenraftsof crustandthe observations of the Laki generationvia steadystate viscousdissipation. Flow usingthe flowfieldsuggest thattheMartian flood lavas have disruptedvelocitieswithinthe sheetflow are calculated equationfor flow betweentwo parallelplatesand the flowtops.Theobserved raftsof crust arehighly suggestive of laminarflow, a Newtonianrheology,and ofsurges traveling through theflow,inflating it tothepoint assumptions shallow slopes. Theresulting setof equations is givenby thata sudden breakout carries away large pieces ofpreviously solidified crust(Figure15). Thecrustridingthefloodis KeszthelyiandSelf[ 1998b]as broken upasit issheared along themargins oftheflowandas theflowmoves between andaround topographic obstacles.<v>=pg0H2/ 8q, Asthesurge wanes, thebase ofthedisrupted upper crust may become coherent viasolidification of theliquidlavamatrix, Qvi• = p g H <v> 0, Qcond = k (T-Ta)/ Hc, allowinginflationto resume.Whilethereis someevidence •r/•x = (Q,•- Q•o•d) / (<v>p Cp*H), (1) (2) (3) (4) fortheformation of marginal levees, based ontheimageswhere<v> is theaverageflow velocity,p is thebulklava availableto date,the flow doesnot seemto be restricted to density, g isthegravitational acceleration, 0 isslope, H isthe narrowchannels. Thedisrupted crustontheseopensheet thickness of theliquidlava,q is viscosity, Qv•,½ is theheat flowsshould haveexperienced a steady process ofproduction by viscous dissipation, Q½o,a is theheatlossby anddestruction as it is churned by the flowpastbends, generated conduction, k isthermal conductivity, T isthetemperature of constrictions, andothertypesof obstacles. theliquidlava,T•isthetemperature offlowsurface (assumed to beambient), Hc isthethickness of thesolidcrust,OT/Ox is 3.2. Quantitative Thermal Model thecooling perunitdistance offlow,andCp*isheatcapacity The surgingflow model impliesthat the lava was including the effectof latentheat(dominated by the transported in two very differentregimes.The first flow crystallization of olivine). Thismodelis verycrude,and regime involved flowundera thick,stationary, insulatingresultsshouldbe consideredaccurateto no betterthana factor 15,040 KESZTHELYI ET AL.: MARTIAN FLOOD LAVAS August .... "Laki fissures 64ON 7 August ,. ., .. 9 August •:-•'-....... 18June 20 J,uly 1.8øW Figure11. Mapof Lakiflowfield,Iceland.Positions of theflowfrontat knowndatesareshown.Large,flood-like breakout withridgedsurface andraftedplates (Figure13)isindicated bylocation 1. Smaller flood-like breakout withraftedplates (Figure 12)isshown by location 2. Classic inflated pahoehoe structures (Figure10c)areshown by location 3. KESZTHELYI ET AL.: MARTIAN FLOOD LAVAS 15,041 .;......... ::.::...'"•;:'½?.:'.';'?..••:•- -'"'•'"?-::;.:-:;.:?. '•........ .,.-' "' •.,..•.'-.•:•,• '".•...' .... .... :..:; ..... '.... ;• •".:'•i•? ";.:?,•.•.: .;:•-• ..'• ..•. -..•½•;..:. **•:,'• :•-,•. •':;:; ..;:.•' ..;,(';.::.':..-.::.•:,;:.;•;..•.:..;•;:•.• ':•... -. .::. ;•--. •.'•.'-. :..'.&: .:•:..-,.• ...•:,• ½:...' -:.. :.• .... •..• ......... ":::;;..?...'".?::..• ..... •. •...:•,.':•,:.-:..::..•:';•;.. .............• ............ .....-. . .. ... ..• ,: .. ..... .....•:..., .. : . • ..:.. .... ß .-.;:• ;•-..... ..::.;-.-...;..;:•.::•:•:..,.:;:...:...:....::; ....... ...•;..• ...::: ....... .... .:. •:•;:::...•, :;'--'-•:•••'•'•-•:•..•;:•:::•:::•t•-•;:----: .... ,..•• ..... .•.: •:.,,..•.. •:.:::•(•;..•..• .... ::;-.•.. •:.. •,..;•,..;:.;;.,...:...:;.:½ ......-:.:.•...•.. .:.:.?•.•½:• •:•-..•: •-- .•:•e•:.:f½•½:•'?..:..-,•-;:• . .-••• .-.•..... :---:..-.-::; .-:*.•:::.:......... -.:• •:::..•:•:,?., ß........ :..: ............'•........:..:..•... •-•-.•- .•..-•,.-:::;:g•.• • -. ,.•:..:,-.. ;..j• ..... ,:-:•.•..•,•..•,-.:,-•-.-.:.. .....• ,•.....z. '......... ½•':: .............. .•:":':".':.:' ..... '•'............ ;?:.....•..,.,..:...: :•...,%• *..,..•....• .• • .... ...:.:....,.. ;......... ':½ .•'"•/ •.• '•,'½•;-..• ......... "•"•'" ....... '•••••:•s:•':•'-'•.'-:-*;:'. .:::*';'::: ..... :.. <:,.½.<..;..• ........ ......... ....•:....•..... :½: ..,,,...:-., •,...,:.:•...•...-...-.. ...... ..:• 4.., •...... •.•.•, .•:..::..: .........:::•:• ...... . . .,.. ;.:?,:.-½,½.. :.•::..•: ... •.,...... .,$(•:,; .. ..::;,.;.;., ......•::•:a.:...:,:..;•:•., , .. ,.... •. :.,.:.:.•..•: ..... •:• ...... ..• -:.. :',' .-,":' ,'/*•,• %.. .... ..-'.;•-;•:'. .*.-. :..:,:•. ::** ..... •:.*?•.'•.-............. :.$..:.:,...•.-•..-:::',•::':-•,,• -**:'**•.",.:":*:•,.***-'•.,..:--.• ....... .::.?a;:.,.,;'.:; :',::.• •-..-;". ".-,?;a ....... :.:*• ............. ,•:....: .......... .. •::.:...•,......;;'½ ...... ...:.•,;•::a ,.:.,:.., ..... ;.•;.,:,;,.:..:;•? -'-•?.;.•.•,?:.:....::,?: ...... ......... ::,,,.... ...... :..• ......... .:•:, '::;• ........ ;•;•':::•::;•2 -•,.½::'""•?'•':"•: :•¾•::•.;" .:,.. ..•..:5.:....;½..::.. ........ •.,.,:..:.•..½.½, •:•, .......... •:;• •.•;• .. ';&:•:•'• ..... .: ..... '•'•'•;•'••;:e • •, .;• •. ':'":'•'" ' ::•.•.-.:.• •"•::; •... .... .-•.. ..... ...:.....•½. •..... :;::•.•:.•.•:; ., "•-•:...•.• .•:;• • :.:: .. •..:.:;•:•::•::::.. :......:.::::::•:•.....: :::::::::::::::::::::: .;.:..::•..;.....:...:..: .::..::•.::::: ....::;..:.:•:: :.....:..•:::.•.:•:..::.:..•;:. :.:..:: ....... :..: .... ......:..::.:::...,:........::•.:::: .......... :.• .... ....:.. ......... :....:::::. :........:.;.:..:.. :.•:.::..:.:....:•.•:•.:•..:•::: :.....:•:....• .....:::.. :•.....: ...: ::.....:.:........... :........: ........ . ... : . ...:%.½:?. z lkm Figure 12. Aerialphotograph of portionof theLaki flow field,Iceland(labeled2 in Figure11). (a) Comextshowingthe Skafia River, Highway 1, andfarmsas well as the locationsof Figures12band 12c. (b) Close-upof the northernchannelwhichwas activeon July 17, 1783,showing100-m-scale raftsof lavacrusttransported in an openchannel.This channelbrokeout from a lava frontthathad stagnated aroundJuly 12, 1783. (c) Close-upof thisearlierlava,showingthat it formeda broadsheetwith pressure ridges,plates,andgrooves.The ridgesarepilesof breccia,theplatesarepiecesof moreiraactcrust,andthe groovesare "wakes"left in the brecciated topasit movedpasttopographic obstacles. 15,042 KESZTHELYI ET AL.: MARTIAN FLOOD LAVAS Figure 13. Aerial photograph of portionof the Laki flow field, Iceland(labeled1 in Figure11), showingpart of the largefloodlike breakoutthat formedin mid-June,1783. Note the largeraftsof ridgedcrusttom from the earlierformedflow top, as well as long groovesin the ridged lava. The ridged lava surfaceconsistsof pressureridgesin the brecciatedflow .top,not tumuli as suggested by ThedigandGreeley[ 1986]. The groovesformedasthisbrecciated flow toptranslated overtopographic obstacles. of 2. However, more sophisticated numericalmodels[e.g., Sakimoto and Zuber, 1998] do not produce significantly differentresults,only morepreciseones. The major modifications required to adjust the model presentedby Keszthelyiand Se/f[1998b] to the Martian flood lavas are the reductionin both slopeand gravity. Ambient temperatureis also reducedto-30øC, but this parameterhas very little effect on the modelresults. Also importantis that the Martian flood lavasappearto have advancedas muchas 2000 km from the presumedvent areas,while Keszthelyiand Self [ 1998b] only examinedthe requirementsfor a flow to extend •100 km. In examining the Martian flood lavas, we chose to investigatethe effectof lava viscosityandthe thicknessof the insulating crust on the minimum flow thicknessand flow velocities needed for a flow to travel 1000 km without roughly correspondingto typical values for ultramafic, basaltic,and basaltic-andesiteflows. Severalpointsin Table I requiresomediscussion.First, irrespectiveof the chosenviscosity,a flow that can extend 1000 km under a l-m-thick crust will be turbulent because of the highflow ratesrequired.Becauseit is difficultto envision a stationaryinsulatingcrustsurvivingover a turbulentflow, we regard this scenarioas unlikely. In the case of the ultramafic(10 Pa s) lavas, the crust must be •20 m thick beforeflow velocitiesdropinto the laminarregime. While the •25 m total thicknessrequiredby this scenariomay be compatiblewith someobservedflow thicknesses, it suggests thatit mightnot be possibleto produceinsulatingsheetflows with extremely fluid lavas, even with low gravity and remarkablyshallowslopes. This arguesagainstultramafic compositions for the Martianflood lavas. However,we note that recent studiessuggestthat mildly turbulentterrestrial freezing. As in the work of Keszthelyiand Self[ 1998b] we assumethat a temperature drop of 50øC within the lava komatiite lava flows may have been emplacedas insulated transportsystemwould lead to significantcrystallizationand pahoehoesheetflows [Hill et al., 1995]. For a viscosityof 1000 Pa s, the minimummodel flow the flow stopping.Thusthe maximumcoolingrate allowable are of the orderof 60 m. This alreadyexceedsthe for a 1000-km-longflow would be 0.05øC/km. Table 1 lists thicknesses the model runs and results for the Mars Observer Laser measuredflow thicknesses,so we can confidently rule out Altimeter (MOLA) derived slopeof 0.025%. Viscositiesof more evolvedand viscouscompositions(e.g., andesites)for 10, 100, and 1000 Pa s for the fluid lava are considered, these flood lavas. We conclude that physical properties KESZTHELYI ET AL.: MARTIAN FLOOD LAVAS 15,043 (a) Figure 14. Aerial photographs of platy lava in Hawaii. (a) Pondedflows at the northernend of Mauna Loa'ssummitcaldera (Mokuaweoweo)and in North Pit. In this case,thereis no cleardirectionof flow recordedin the orientationsand shapesof the crustalrafts. (b) The 1974 KilaueaSouthwestRift Zone openchannelflow. Lava pondedagainstthe cliff face and formeda solid crustbeforethe flow surgedonward. Boththeseareasarecharacterized by highflow ratesandshallowslopes. similarto terrestrialbasaltsare probablythe mostappropriate for furthermodelingof the Martianfloodlavas. Since the model constrainsboth flow velocity and flow thickness,we can also make quite robustconclusionsabout minimum flow ratesper unit width of flow. This mustbe at least1-5m2/sforthelavatobetransported >1000kmwithout freezing. The available images suggestthat the sheetsare generally on the order of 10 km wide, requiring average effusion ratesontheorderof l-5xl04m3/sorgreater. Thisis approximatelyI orderof magnitudehigherthanestimatedfor 15,044 KESZTHELYI ET AL.: MARTIAN FLOOD LAVAS a Figure 15. Cartoonof formationof raftedplateson Martian flood lavas. (a) Lava entersthe area,most likely as a rapid flood. (b) The flow front stagnates anda largevolumeof liquid lava is storedwithin the confinesof a thickening,insulatingcrust. Lava is fed into the areaundera thick insulatingcrust. (c) The flow frontfails and lava breaksout in a runawayflood,raftingaway piecesof crust.The sequence is repeatedasthefloodwanesandslows,andan insulatingcrustbeginsto growagain. Table 1. Results From Insulated Sheet Flow Model Viscosity (Composition) Crust TotalFlow Thickness Thickness Pa s m 10 (ultramafic) 1 5 (turbulent) (turbulent) 10 (turbulent) 20 100 (basaltic) 1000 (basalticandesite) I 5 m 24 (turbulent) 27 terrestrialflood basalteruptions[Thordarson,1995;Self et al., 1997, 1998;Thordarsonand Self, 1998]. Average As an aside,the Keszthelyi[ 1995] thermalmodel for lava FlowVelocity tubes indicatesthat 1000 km long flows could be formedon m/s theMartian plains withaneffusion rateof only33m3/sanda tube diameter of 22.7 m. However, since we have not found 0.25 0.75 10 26 0.39 20 32 0.21 1 5 (turbulent) 70 10 56 0.33 20 53 0.18 Insulatedsheet flow not consideredphysicallypossiblewith turbulent flow. any evidencefor narrowlavatubesin the Martian flood lavas, and becausesuchlava tubesare not expectedon theseshallow slopes[Keszthelyiand Self, 1998b], we find it very unlikely that the Martian flood lavasseenin the recentMOC images wereemplacedat low effusionrates. 3.2.2. Open sheet flow. In order to quantify the more rapid, surging,stageof our hypothesizedemplacementmodel for the Martian flood lavas, we require a different set of thermalmodels. Crisp and Baloga [1994] developeda model for the open channel aa flows during the 1984 Mauna Loa eruptionthat is generallyapplicableto the open sheetflows we postulate. The Crisp and Baloga [1994] modelcalculates the coolingwithin the well-mixed core of the flow, including KESZTHELYI ET AL.: MARTIAN FLOOD LAVAS 15,045 the effectsof reductionin radiativecoolingby a disrupted While laminar,averageflow velocity for Newtoniansheet crust,mixing of cold crustback into the flow, and the latent flow is givenby [e.g.,Bird et al., 1960] heat of crystallization. Keszthelyi and Self [1998a,b] (10) presenteda minor modification of the Crisp and Baloga <v>= pg 0 H2/ 3 fl. [1994] model to convertthe inputsto parametersthat are There are many differentformulationsfor turbulentflow, but somewhat easier to constrain for flows that are not observed while active. In particular, the increasein crystallinity is Keszthelyiand Self[ 1998b] explainedwhy the one presented calculatedfrom the coolingratherthanusingpetrologicaldata by Goncharov [1964] appearsto be the most applicableto from samplescollectedfromthe activechannel.Atmospheric lava flows. Thusfor moderatelyturbulentflow we use convectivecoolingand viscousheatingwere alsoadded,with =gH0 / C• (11a) flow ratescalculatedassuminga Newtonianrheologywhile <v>2 Cf = •,/2, (1 lb) the flow is laminar and using the formulaspresentedby ),, = {4 1og•o[6.15((Re'+800)/4 1 )0.92]}-2, (11 c) Goncharov[1964] whenthe flow is turbulent.Equations(5)(11d) (10) describethe Keszthelyiand Self [ 1998a,b] modification Re'= 2Re, of the Crisp and Baloga [ 1994] model: whereCf is a frictionfactorand•, is an empiricallyderivedfit to experimentsof fluid flow that are moderatelyturbulent (5) c3r/c3x = {Qvisc-Qrad-Qatm-Qentr} / {<v> 19Cp,S}, [Goncharov,1964]. Combining these equations, the Keszthelyi and Self where T is the core temperature,x is the down flow direction, [1998a,b] modelcalculatesthe flow rate and coolingrate for Qvisc is theviscousheating,Qradis radiativeheatlosses,Qatm is the core of a sheetor wide channelflow with a disrupted atmosphericheat loss, Qentris the heat lost from the core of the flow via entrainmentof the crust,<v> is the averageflow crust. However, it must be noted that the model does have velocity,p is lava density,Cp* is heat capacityincluding several critical shortcomingswhen applied to the Martian latent heat, and H is the flow depth. Viscous heating is flood lavas. First,the pulsatingnatureof the proposedmodel describedby equation(2), and radiative heat lossescan be is not incorporatedinto this simple model. However, by examiningthe two flow regimesseparately,we are able to expressed as make some reasonable inferences about the overall flow Qrad = •;*f(74- ra4), (6) emplacement. Second, even if the liquid lava is approximatelyNewtonJan,a thick brecciatedcrustcanimpart the bulk flow with a significantyield strength[e.g.,Boothand where e is emissivity (-0.95), , is the Stefan-Boltzmann factor,f is the fractionof coreexposed,and T, is the ambient Self, 1973; Hulme, 1974; Fink and Zimbelman, 1986]. temperature[Crisp and Baloga, 1990]. The atmosphericheat However,inputtinga reasonableviscosityof 500 Pa s for the Laki lava, our flow modelproducesflow velocities(1-4 m/s) losshasa similarexpression, anderuption rates(1500-9000 m3/s)thatareconsistent with the eyewitnessobservations. This suggeststhat the crust Qatm-'h f(T- Ta), (7) riding on this type of flood might have a relatively minor where h is the atmosphericheat transfercoefficient,which effect on the bulk flow rheology. Third, the modelcannotbe hasan approximate valueof 70 W m'2K'l on the Earth used to examine the temporal and spatial evolution of the [Keszthelyiand Denlinger, 1996]. This value shouldbe flow. Still, the successof the original Crisp and Baloga directlyproportional to atmospheric densityandheatcapacity [1994] model suggeststhat this modified version shouldbe [e.g., Arya, 1988], suggestinga value of-1 for Mars. Heat more than adequate to provide broad constraintson the transfer due to entrainment of the crust is eruption parameters. More rigorous modeling of the flow behavior,as in the work by Glaze and Baloga [1998], will becomeapplicableonly when individualflows and breakouts (8) Qentr = 19re, Hc (T- T0 / z, canbe mappedout. where Hc is the thicknessof the crust, T• is the average The key inputs into this model are the thermophysical temperature of the crust,andz is the averagetime a pieceof propertiesof the lava (initial temperature,bulk viscosity,heat crustsurvivesbeforebeingentrainedbackintothe coreof the capacityincludinglatentheat and bulk density)and the crust flow. (average temperature, survival timescale, and thickness). Slopeis the singlemostimportantfactor[Keszthelyiand Self, Reynoldsnumber (Re) is less than 500. We note that the 1998a],but is well constrainedfor the mostrecentflood lavas valueof Re markingthe transitionto turbulentflow depends by the new MOLA data at about0.025% [Smithet al., 1999]. on both the exact versionof the Reynoldsnumberusedand The thermo-physicalpropertiesare related to the assumed the geometryof the flow. The variouspermutations of Re and compositionof the lavas. We have determinedthat the open the critical Re that permeatethe publishedliteraturewere sheet flow model does not help further constrain the discussed by Keszthelyiand Self[1998b]. In this paperwe thermophysicalpropertiesof the lava and thus only discuss use runsusingthe basalticcompositionsuggested by the insulated The sheet flow is assumed to be laminar while the sheet model. Re = p rh<v> / rl, (9) The propertiesof the crust are poorly constrained. The only published observational constraints on the crust whererhis the lengthscaleof thelargestphysicalperturbation parametersare from Crisp and Baloga [1994] for the 1984 that canpropagatedownthe lengthof the flow (i.e., the flow MaunaLoa openchannelaa flow. After examininga rangeof thickness for a sheet),<v> is the averagevelocity,andrl is possiblecrustal parameters,we have chosento reportjust viscosity. three exampleswhich illustrate the main results. We call 15,046 KESZTHELYI ET AL.: MARTIAN Table2. CrustalProperties forOpenSheetFlowModel CrustType Thin Medium Thick 'c,s FLOOD LAVAS extend more than a few tens of kilometersbefore cooling >50øC, the flow must be >20 m thick. At such a flow f, % Hc, m 100 1000 50 10 0.05 1 100 500 thickness the calculated flow velocities will be of the order of 100,000 1 10 700 m2/sperunit flow width. For sheets -10 km widethis T-Tc, øC a few metersper second,andthe localflow rateswill be >40 translated to minimumlocalvolumetric flowratesof-4 x 10s m3/s. If individualflood-likebreakoutstraveledcloserto 100 thesethree cases"thin" crust, "medium"crust, and "thick" crust. The parametersusedfor eachcaseare listedin Table 2 but requiresomejustification. In general,we assumethat a km,thevolumetric flowratesarelikelyto be-106m3/sand The values listed in Table 2 for the thin crust case are for a the recent Martian flood lavas are broad sheet flows that were flow thicknesseshad to be >40 m. However,it is likely that the final flow thicknessdroppedas the flood stageof the waned,explainingwhy >40-m-tallflow margins thinnercrustwill be bothhotterandmorerapidlydestroyed. emplacement In the "thin"crustcase,we examinethe possibilitythat the havenot beenobservedin thisregion. crust is only centimetersthick. Such a thin crustwould be expectedto be disruptedandreincorporated into the flow in a 4. Conclusions and Discussion matterof minutes. The extensivelydisruptedcrustwouldalso Based on comparisonwith the morphology of large exposea relatively large portionof the interiorof the flow. terrestriallava flows andthermalmodeling,we concludethat crustmarginallythinner,hotter,andmoredisrupted thanthat emplacedby alternatingbetweentwo flow regimes:insulated reportedby Crisp and Baloga[1994] for the earlypartof the sheet flow and flood-like breakouts. The closest terrestrial 1984 Mauna Loa eruption. The "medium" crust case analogwe have identifiedis part of the 1783-1784Laki lava examinesparameters relatedto a crustapproximately a meter flow in Iceland that was subjectedto large surgesin lava thick. Crustalblocksmight survivefor tens or hundredsof influx. minutesand would be substantially coolerthan the liquid Modeling results suggest that the flows should have interior of the flow. The "thick" crust is taken to be about 10 thermo-physicalpropertiesclose to basalts. More evolved m thick with blockssurvivingfor roughlya day. The thick compositions(i.e., andesites)would requireflow thicknesses crustcaseis likely to be the bestrepresentation of the rafting greaterthan thoseobserved.Ultramafic lavasare not likely, lavaon Mars,wherepiecesof crustarestrongenoughto form because they would require the formation of a stable, rafts kilometers across. While these three cases do not cover insulatingcrustovera turbulentflow. the full rangeof plausiblecrustproperties, they do provide Average eruption rates for basaltic Martian flood lavas importantinsightintothedynamics of thesurgingfloodlavas. wereprobably--•10 4 m3/s,about1 orderof magnitude higher Despite the shortcomingsof the model noted earlier, than those estimated for typical terrestrial flood basalt severalpointsare clearlydemonstrated by the modelresults eruptions.However,the large surgesthat raftedaway pieces shownin Table3. First,we canruleoutcertaintypesof flow of crust are likely to have involved short-livedvolumetric behaviorwith a highdegreeof confidence.If the disrupted flowrates1 to2 orders ofmagnitude higher (10s- 106m3/s). crustis vigorouslybrokenup and mixed into the interiorof This style of emplacementis significantlydifferentfrom that the flow, the flow will be remarkablythermallyinefficient.In inferredfor the majorityof terrestrialfloodbasalts.However, fact, the "medium"thicknesscrust, with a survival timescale of 15 minutes,coolsalmostan orderof magnitudefasterthan the "thin" crustthat losesheat via essentiallyuninhibited thermal radiation. This counterintuitiveresult is actually easilyexplained. The crustridingthe flood-likebreakoutis the productof daysor weeksof cooling. When this material is mixed into the interior of the flow, the cumulativeheat loss from the many daysof coolingis suddenlytransported into if typical Martian floodlavaeruptions produce 103-104 km3of lavaat-104m3/s, theeruption durations areexpected tobeof the orderof a year to a decade,very similarto thoseestimated for someterrestrialflood basalt eruptions[e.g., Thordarson, 1995; Thordarsonand Self, 1998]. Theseconclusions naturallyraisea hostof new questions. Perhapsthe mostobviousis, Why are the stylesof eruptionof flood lavas different on the Earth and Mars? We speculate the previouslyinsulatedflow interior. Not even wholesale radiative heat loss from the surface of the flow can match this rateof cooling. The modeling suggeststhat in this most thermally inefficient mode, the flood should not have been able to advancemore than 1-12 km before losing>50øC from the interior of the flow and being brought to a halt by the resultingcrystallization.The fact that we seethe sheetlobes with rafted piecesof crust extendingfor tens of kilometers strongly indicatesthat this thermally inefficient style of emplacementwas not the norm for the Martian flood lavas. This rapid mixing of the disruptedcrustand freezingof the lava would be mostlikely if the flow was turbulent,again arguingagainstvery fluid ultramaficlavas. The model runs with the "thick" crust are our current best attemptto mimic the undanhlaup-like phaseof the Martian flood lavas. Even thoughthe thick crustcasehasa crustthat is stableon the timescaleof a day,the occasional entrainment of blocksof crustleadsto substantialcooling. In fact, to Table3. Results FromOpenSheetFlowModel Flow Thickness m 5 Flow Velocity m/s 0.19 Flow Rate m2/s 9.5 Crust Type Cooling Rate øC/km "thin" 71 "medium" 520 "thick" 73 "thin" 8.8 10 0.78 7.8 "medium" "thick" 65 9.1 "thin" 1.8 20 1.8 36 "medium" "thick" 14 1.9 "thin" 0.57 40 3.0 120 "medium" 4.2 "thick" 0.58 KESZTHELYI ET AL.: MARTIAN thatthismaybe theresultof thethickerlithosphere on Mars. Wilsonand Head [1983, 1994] have shownthat larger volumesof magmamustaccumulate to breakthroughthe thick lithosphere on Mars. The resultingdikesshouldbe widerandproduce highereruption rates.Thegasphasein the propagating dikeis expected to be concentrated in theupper partof thedike[e.g.,Spence et al., 1987],leadingto aninitial vigorousfountaining phasefollowedquicklyby a waning phaseas the volatilesare rapidlyexpended.Eachphaseof extending the fissuresystemcouldleadto a pulsein the flux of lavatravelingthroughthe flow,asin theearlypartof the FLOOD LAVAS 15,047 Another location where the predictedrecent pyroclastic depositsmight be preservedis in the polar regions. Again, detailed in situ observationswill probably be needed to distinguishash fall layersformedby an eruptionfrom dustrich layers causedby dust storms. Such observationscoult enable us to observe the interaction between volcanic eruptionsand climate,in the samemanneras the terrestrialice cores[Zielinskiet al., 1994]. Acknowledgments.This researchwas partially fundedby grant NAG5-8308 from the NASA Mars Data AnalysisProgram. We Laki eruption. Suchcyclesare commonfor terrestrialbasaltic thank David Pieri (JPL) and Bruce Murray (Caltech) for aerial photographs of the CarrizozoandPisgahflow fields. We alsowould eruptions[Wadge, 1981], but might have beeneven more like to thankTracyGreggandDavid Crownfor veryhelpfulreviews. dramatic on Mars. We thankMike Malin, Ken Edgett,Elsa Jensenand othersat Malin The hypothesis thatthe Martianfloodlavaswerefed by SpaceScienceSystemsfor the excellentimages. fissureeruptions withrepeated veryvigorous phases leadsto predictionsthat may be testable with current and future References missions to Mars. Thehypothesized styleof eruptionshould producevery little in the form of vent structuresbut should Arya, S. P.S., Introduction to Micrometeorology, 307 pp.,Academic, SanDiego,Calif., 1988. result in extensivepyroclasticdeposits. The lava flows Bates, R. L., and J. A. Jackson(œds.),Dictionaryof Geological withoutextensive ventstructures seenaround Cerberus Rupes Terms.,5th ed., 571 pp.,AnchorBooks,New York, 1984. [McEwenet al., 1999c]areconsistent with ourhypothesizedBird, R. B., W. E. Stewart, and E. N. Lightfoot, Transport styleof eruption. Phenomena,780 pp., JohnWiley, New York, 1960. The predictionof large volumesof pyroclastics is also Booth,B., and S. Self, Rheologicalfeaturesof the 1971 Mount Etna testable.If we assumethattheproducts of the lavafountains lavas,Philos. Trans.R. Soc.London,Ser. A, 274, 99-106, 1973. Butler, B. J., 3.5-cm radar investigationof Mars and Mercury: on Marsaresimilarto thoseof highbasalticlavafountains on Planetologicalimplications,Ph.D. thesis,Calif. Inst. of Techno!., theEarth,we estimate that 10%of themassof theerupted Pasadena,1994. lavawill bein theformof pyroclastics [Thordarson andSelf, Cattermole,P., Volcanic flow developmenton Alba Patera,Mars, Icarus, 83, 453-493, 1990. 1993].Thepyroclasts areexpected to include a widerangeof Crisp, J., and S. Baloga, A model for lava flows with two thermal materialsincludinglarger droplets(Pele'stears), open components, J. Geophys.Res.,95, 1255-1270, 1990. framework foam(reticulite), andfineash[e.g.,Manganand Crisp, J., and S. M. Baloga, Influence of crystallization and Cashman,1996]. Thesematerials aretypically10-100times entrainmentof coolermaterialon the emplacementof basalticaa flows,J. Geophys.Res.,99, 11,819-11,831,1994. lessdensethanthe lava flows. This suggests that the total volumeof pyroclastics shouldbe approximately 1-10times Davies, M. œ., R. M. Batson, and S.S. C. Wu, Geodesyand thevolume of thelava,implying about106-107 km3of recent pyroclasticdeposits. Cartography, in Mars, editedby H. H. Kieffer, B. M. Jakosky,C. W. Snyder,M. S. Matthews,pp. 321-342, Universityof Arizona, Tucson, Ariz., 1992. It is likely that much of this pyroclasticmaterial is Edgett,K. S., and J. W. Rice, Very youngvolcanic,lacustrine,and fluvial featuresof the CerberusandElysiumBasinregion,Mars: preservedon the surfaceof Mars. The denserfraction, Whereto sendthe 1999 Mars SurveyorLander,Lunar Planet.Sci. includingthe Pele'stearsand piecesof spatter,shouldbe Conf Abstr., 26, 357-358, 1995. concentratednearestto the Elysium and AmazonisPlanitia Edgett, K. S., B. J. Butler, J. R. Zimbelman,and V. E. Hamilton, regions,while the extremelyporous(>>99% void space) reticulitewouldhavetraveledfarther,perhaps reachingthe baseof theTharsisvolcanoes.The fine-grained ashmight Geologic context of the Mars radar "Stealth" region in southwesternTharsis, d. Geophys.Res., 102, 21,545-21,567, 1997. Einarsson, T., G. M. Gudbergsson, G. A. Gunnlaugsson, S. Rafnsson, havebeentransported globally. andS. Thorarinsson (Eds.)Skafidrledar 1783-1784:Ritgerdirog TheMedusaeFossae Formation (MFF) is characterized by Heimildir,279 pp.,Mill of Menning,Reykjavik,1984. a weaklylithifiedmaterialthatis readilycarvedby the wind Fink, J. H., and J. R. Zimbelman,Rheologyof the 1983 Royal Gardensbasaltflows, Kilauea Volcano, Hawaii, Bull. Volcanol.. [Ward,1979;Scottand Tanaka,1982, 1986]. The MFF is 48, 87-96, 1986. mostlylocatedbetweenthe radarbrightfreshflows of the Frey, F., et al., KerguelenPlateau-Broken Ridge:A largeigneous Cerberus Plainsandthe"stealth" region[Butler,1994;Edgett provinceSites1135-1142,Proc. OceanDrilling ProgramInitial et al., 1997](seeFigure1). A smalldegreeof weldingor Reports,[CD-ROM], Volume183, 2000. alterationof basalticpyroclasticdepositsmay providethe Glaze, L. S., and S. M. Baloga,Dimensionsof Pu'u'O'o lava flows appropriate degreeof lithificationfor theMFF. on Mars,J. Geophys.Res.,103, 13,659-13,666,1998. V. N., Dynamicsof ChannelFlow, 317 pp., translated It is intriguingthatourestimated volumeof pyroclastics is Goncharov, from Russianby Israel ProgramSci. Transl., U.S. Dep. of similar to the estimated volume of the Medusae Fossae Commer.,Off. of Tech.Serv.,Washington, D.C., 1964. Formation[Sakirnotoet al., 1999]. The MFF partially Greeley,R., and J. S. King, Volcanismof the EasternSnakeRiver overlaps thestealthregion,butthestealthregionis generally Plain, Idaho:A ComparativePlanetaryGeologyGuidebook,308 farther to the east [Muhlernanet al., 1991;Butler, 1994; Harmon etal., 1999].Thestealth region isoftheorderof 106 pp.,NASA, Washington,D.C., 1977. Greeley,R., and P. D. Spudis,Volcanismon Mars,Rev. Geophys., 19, 13-41, 1981. km2andhasa radarabsorbing cover atleast several metersGreeley,R., S. A. Fagents,N. A. Bridges,D. A. Crown,and L. S. thick [Butler, 1994]. Extremelyporousreticuliteis a prime candidatefor this surfacecover,but in situ samplingwill probablybe necessaryto confirmthis hypothesis[Butler, 1994;Edgettet al., 1997]. Crumpier,Volcanismon the red planet:Mars, in Environmental Effectson VolcanicEruptions:FromDeepOceansto DeepSpace, editedby J. R. Zimbelmanand T. K. P. Gregg,KluwerAcad., Norwell, Mass.,in press,2000. Harmon, J. K., M.P. Sulzer, P. J. Perillat, and J. F. Chandler, Mars 15,048 KESZTHELYI ET AL.: MARTIAN radar mapping:Strongbackscatterfrom the Elysium Basin and outflow channel,Icarus, 95, 153-156, 1992. Harmon,J. K., R. E. Arvidson,E. A. Guinness,B. A. Campbell,and M. A. Slade, Mars mapping with delay-Doppler radar, d. Geophys.Res.,104, 14,065-14,089,1999. Hartmann,W. K., Martian cratering:VI, Cratercountisochrons and evidence for recent volcanism from Mars Global Surveyor, Meteorit. Planet. Sci., 341, 167-177, 1999. Hartmann,W. K., and D.C. Berman,ElysiumPlanitia lava flows: Cratercountchronologyandgeologicalimplications, J. Geophys. Res., this issue. Hartmann, W. K, M Malin, A. McEwen, M. Carr, L. Soderblom,P. Thomas, E. Danielson, P. James, and J. Veverka, Evidence for recent volcanism on Mars from crater counts,Nature, 397, 586589, 1999. FLOOD LAVAS McEwen, A. S., M. Malin, L. Keszthelyi, P. Lanagan,R. Beyer, W. Hartmann,Recentand ancientflood lavason Mars (abstract),Lun. Planet.Sci. Conf., [CD-ROM], 30, abstract1829, 1999b. McEwen, A., R. Beyer, D. Burr, L. Keszthelyi, and P. Lanagan, Well-preservedvolcanicand fluvial featureson Mars (abstract), Eos Trans.AGU, 80 (46), Fall Meet. Suppl.,609-610,1999c. Mouginis-Mark,P. J., L. Wilson, J. W. Head, S. H. Brown,J. L. Hall, and K. D. Sullivan, Elysium Planitia, Mars: Regional geology, volcanology,and evidencefor volcano-groundice interactions,Earth Moon Planets, 30, 149-173, 1984. Muhleman, D. O., B. J. Butler, A. W. Grossman,and M. A. Slade, Radarimagesof Mars,Science,253, 1508-1513,1991. Oskarsson, N., G. E. Sigvaldason,and S. Steinthorsson, A dynamic modelof rift zone petrogenesis and regionalpetrologyof Iceland, J. Petrol., 23, 28-74, 1982. Peterson,D. W., and R. I. Tilling, Transitionof basalticlava from pahoehoe to aa, KilaueaVolcano,Hawaii:Fieldobservations and key factors.J. Volcanol.Geotherm.Res.,7, 271-293,1980. 34, 159-188, 1995. Pieri, D.C., and S. M. Baloga, Eruption rate, area, and length relationships for some Hawaiian lava flows, J. Volcanol. Hon, K., J. Kauahikaua,R. Denlinger,andK. Mackay,Emplacement Geotherm. Res., 7, 271-293, 1986. and inflation of pahoehoe sheet flows: Observations and Plescia, J. B., Recent flood lavas in the Elysium region of Mars, measurementsof active lava flows on Kilauea Volcano, Hawaii, Hill, R. E. T., S. J. Barnes,M. J. Gole, and S. E. Dowling, The volcanologyof komatiitesas deducedfrom field relationships in the Norseman-Wilunagreenstonebelt, WesternAustralia,Lithos, Geol. Soc. Am. Bull., 106, 351-370, 1994. Hooper,P. R., The ColumbiaRiver basalts,Science,215, 1463-1468, 1982. Hulme, G., Interpretationof lava flow morphology,Geophys.d. R. Astron. Soc., 39, 361-383, 1974. Jakobsson, S. P., Petrologyof recentbasaltsof the EasternVolcanic Zone, Iceland, Acta Naturalia Islandica, 2, 1-103, 1979. Jerram, D. A., H. Stollhfen, V. Lorenz, S.C. Milner, and A. R. Duncan, Plume related pahoehoe lava flows of the basal Entendeka flood basalts,NW Namibia, Int. Volcanol. Congr. MeetingAbstr.,p. 28, 1998. Icarus, 88, 465-490, 1990. Reidel, S. P., Emplacementof Columbia River flood basalt,J. Geophys. Res.,103, 27,393-27,410,1998. Rowland, S. K., and G. P. L. Walker, Pahoehoe and aa in Hawaii: Volumetric flow rate controlsthe lava structure,Bull. Volcanol., 52, 615-628, 1990. Sakimoto,S. E. H., and M. T. Zuber,Flow andconvectivecoolingin lavatubes,J. Geophys. Res.,! 03, 27,465-27,487,1998. Sakimoto, S. E. H., H. V. Frey, J. B. Garvin, and J. H. Roark, Topography,roughness,layering, and slope propertiesof the Medusae Fossae Formation from Mars Orbiter Laser Altimeter (MOLA) andMars OrbiterCamera(MOC) data,J. Geophys. Res., Keszthelyi,L., A preliminarythermalbudgetfor lava tubeson the 104, 24,141-24,154, 1999. Earthandplanets,,/. Geophys. Res.100,20,411-20,420,1995. Keszthelyi, L., and R. Denlinger, The initial cooling of pahoehoe Scott, D. H., and M. G. Chapman, Mars Elysium Basin: lava flow lobes,Bull. Volcanol., 58, 5-18, 1996. Geologic/volumetricanalysisof a young lake and exobiologic implications, Proc.Lun. Planet.Sci. Conf 21st,669-677,1991. Keszthelyi,L. P., and D.C. Pieri, Emplacementof the 75-km-long Carrizozo lava flow field, south-centralNew Mexico, J. Volcanol. Scott, D. H., and K. L. Tanaka, Ignimbritesof AmazonisPlanitia Geotherm.Res., 59, 59-75, 1993. regionof Mars,J. Geophys. Res.,87, 1179-1190,1982. Keszthelyi,L., and S. Self, Why are therelongchannelizedflowson Scott, D. H., and K. L. Tanaka, Geologic map of the western equatorialregion of Mars, scale 1:15,000,000, Map 1-1802-A, Venus and Mars, but not on the Earth? (abstract),Lun. Planet. U.S. Geol. Surv., Reston, Va., 1986. Sci. Conf. [CD-ROM], 29, abstract1529, 1998a. Keszthelyi, L., and S. Self, Some physicalrequirementsfor the Self, S., T. Thordarson, and L. Keszthelyi, Emplacement of continentalflood basaltlava flows, in Large IgneousProvinces, emplacementof long basalticlava flows, ,/. Geophys.Res.,103, 27,447-27,464, 1998b. editedby J..J. Mahoneyand M. Coffin, Geophys.Monogr. Set., vol. 100,pp. 381-410,AGU, Washington, D.C., 1997. Keszthelyi, L., S. Self, and T. Thordarson,Applicationof recent studieson the emplacementof basalticlava flows to the Deccan Self, S., L. Keszthelyi, and T. Thordarson,The importanceof pahoehoe, Annu.Rev.Earth Planet.Sci.,26, 81-110, 1998. Traps,Mem. Geol. Soc.India, 43, 485-520, 1999. Shaw,H., and D. Swanson,Eruptionand flow ratesof flood basalts, Kilburn, C. R. J., and R. M. C. Lopes,Generalpatternsof flow field in Proceedingsof the SecondColumbiaRiverBasaltSymposium, growth: Aa and blocky lavas, J. Geophys.Res., 96, 19,72119,732, 1991. editedby E. Gilmour and D. Stradling,pp. 271-299, East.Wash. Macdonald, G. A., Pahoehoe, aa, and block lava, Am. J. Sci., 251, StateCollegePress,Cheney,1970. 169-191, 1953. Smith,D. E., et al., The globaltopographyof Mars andimplications for surfaceevolution. Science,284, 1495-1503, 1999. Macdougall,J. D., Continental FloodBasalts,341 pp.,KluwerAcad., Norwell, Mass., 1988. Spence,D. A., P. W. Sharp, and D. L. Turcotte, Buoyancy-driven Malin, M. C., et al., Early views of the Martian surfacefrom the crack propagation:A mechanismfor magmamigration,d. Fluid Mech., 174, 135-153, 1987. Mars Orbiter Camera on Mars Global Surveyor, Science,279, 1681-1692, 1998. Steingrimsson, J., Fires of the Earth: The Laki Eruption1783-1784, Mangan, M. T., and K. V. Cashman,The structureof basalticscoria translated by K. Kunz, pp. 1-95, Univ. of Iceland Press, and reticulite and inferencesfor vesiculation,foam formation, and Reykjavik, 1998. fragmentationin lava fountains,J. Volcanol.Geotherm.Res., 73, Stephenson,P. J., A. T. Burch-Johnston,D. Stanton,and P. W. 1-18, 1996. Whitehead, Three long lava flows in north Queensland,J. Geophys.Res.,103, 27,359-27,382,1998. Martin, B. S., The Roza Member, Columbia River Basalt Group: Chemical stratigraphyand flow distribution,in Volcanismand Swanson,D., T. Wright, and R. Helz, Linear vent systemsand Tectonism in the Columbia River Flood-Basalt Province, edited estimatedratesof magmaproductionanderuptionfor the Yakima basalton the Columbia Plateau,Am. J. Sci.. 275, 877-905, 1975. by S. P. ReidelandP. R. Hooper,Spec.Pap. Geol. Soc.Am., 239, 85-104, 1989. Tanaka,K. L., and D. H. Scott,Channelsof Mars' Elysiumregion: McEwen, A. S., K. S. Edgett, M. C. Malin, L. Keszthelyi,and P. Extent,sources,and stratigraphy, NASA Tech.Memo,88383, 403405, 1986. Lanagan,Mars Global Surveyorcamerateststhe ElysiumBasin controversy:It's lava not lake sediments,Geol. Soc.Amer. Abstr. Theilig, E., and R. Greeley, Lava flows on Mars: Analysisof small Programs,abstract50268, 1998. surfacefeaturesand comparisons with terrestrialanalogs,Proc. McEwen, A. S., M. C. Malin, M. H. Carr, and W. K. Hartmann, LunarPlanet.Sci. Conf. 17th,Part 1, d. Geophys.Res.,91, suppl., E 193-E206, 1986. Voluminous volcanism on early Mars revealed in Vailes Marineris, Nature, 397, 584-586, 1999a. Thorarinsson S., On the damagecausedby volcaniceruptionswith KESZTHELYI ET AL.: MARTIAN special referenceto tephra and gases,in VolcanicActivity and Human Geology,editedby P. D. Sheetsand D. K. Grayson,pp. 125-159,Academic,SanDiego, Calif., 1979. Thordarson,T., The eruptionsequenceand eruptionbehaviorof the Laki 1783-1785 eruption,Iceland:Characteristics and distribution of eruption products,M.S. thesis, 239 pp., Univ. of Texas at Arlington, 1990. Thordarson,T., Volatile releaseand atmosphericeffectsof basaltic fissureeruptions,Ph.D. thesis,446 pp., Univ. of Hawaii at Manoa, Honolulu, 1995. Thordarson,T., and S. Self, The Laki (SkaftfirFires) and Grimsv6tn eruptionsin 1783-1785,Bull. Volcanol.,55, 233-263, 1993. Thordarson, T., and S. Self, The Roza Member, Columbia River Basalt Group: A gigantic pahoehoelava flow field formed by endogenousprocesses?,J. Geophys.Res., 103, 27,411-27,445, 1998. Thordarson, T., S. Self,N. (Sskarsson, andT. Hulsebosch, Sulfur, FLOOD LAVAS 15,049 Walker, G. P. L., Lengths of lava flows, Philos. Tran., R. Soc. London, $er./t, 274, 107-118, 1973. Ward, A. W., Yardangson Mars: Evidenceof recentwind erosion,J. Geophys.Res.,84, 8147-8166,1979. Wilson, L., and J. W. Head, A comparisonof volcanic eruption processes on Earth,Moon, Mars, Io, andVenus,Nature, 302, 663669, 1983. Wilson, L., and J. W. Head, Mars: Review and analysisof volcanic eruptiontheory and relationshipsto observedlandforms,Rev. Geophys.,32, 221-264, 1994. Woods, A. W., A model of the plumes above basaltic fissure eruptions,Geophys. Res.Lett.,20, 1115-1118,1993. Zielinski, G. A., P. A. Mayewski,L. D. Meeker, S. Whitlow, M. S. Twickler, M. Morrison,D. A. Meese, A. J. Gow, and R. B. Alley, Record of volcanism since 7000-BC from the GISP2 Greenland ice coreand implicationsfor the volcano-climate system,Science, 264, 948-952, 1994. chlorine,and fluorinedegassing andatmospheric loadingby the 1783-84 AD Laki (Skaffftr Fires) eruption in Iceland, Bull. L. KeszthelyiandA. S. McEwen,PlanetaryImageResearch Laboratory,LunarandPlanetaryLaboratory,Universityof Arizona, 1629E. UniversityBoulevard,Tucson,AZ 85721-0092. edu) and volumeof the ColumbiaRiver BasaltGroup,in Volcanism ([email protected]. Th. Thordarson, CSIRO, Divisionof ExplorationandMining, and Tectonism in the Columbia River Flood-Basalt Province, editedby S. P. Reidel and P. R. Hooper,Spec.Pap. Geol. $oc. PrivateMail Bag,P.O. Wembley,WA 6014,Australia. Volcanol.,58, 205-225, 1996. Tolan, T. L., S. P. Reidel, M. H. Beeson,J. L. Anderson,K. R. Fecht, and D. A. Swanson,Revisions to the estimatesof the areal extent Am., 239, 1-20, 1989. Wadge, G., The variation of magma dischargeduring basaltic eruptions,J. Volcanol.Geotherm.Res.,11, 139-168, 1981. (ReceivedSeptember28, 1999;revisedFebruary14, 2000; acceptedFebruary29, 2000.)
© Copyright 2026 Paperzz