3.2 The Natural Logarithm Function 3.2 Brian E. Veitch The Natural Logarithm Function Definition 3.3 (The Natural Logarithm). The natural logarithmic function is the function defined by x Z ln x = 1 So ln x is the area under the curve f (x) = 1 dt t 1 from 1 to x. t For 0 < x < 1: 72 3.2 The Natural Logarithm Function Brian E. Veitch This means the value of ln x, x < 1, is the the negative of the area shown above. This should make sense from one of our integration properties. Z ln x = 1 x 1 dt = − t Z 1 x 1 dt < 0 t Derivative of the Natural Logarithm d 1 (ln x) = dx x Proof. It comes directly from the definition of ln x and the Fundamental Theorem of Calc Part 1. d d ln x = dx dx 3.2.1 Z 1 Laws of Logarithms 1. ln(xy) = ln x + ln y x 2. ln = ln x − ln y y 1 3. ln( = − ln(x) x 4. ln(xr ) = r ln x 73 x 1 1 dt = t x 3.2 The Natural Logarithm Function Example 3.7. Expand ln Brian E. Veitch 3x2 (x + 1)3 ln 3x2 = ln 3x2 − ln(x + 1)3 3 (x + 1) = ln 3x2 − 3 ln(x + 1) p (x2 + 5)10 cos(x) Example 3.8. Expand ln x3 p p (x2 + 5)10 cos(x) 2 10 cos(x) − ln x3 ln = ln(x + 5) + ln x3 1 = 10 ln(x2 + 5) + ln cos(x) − 3 ln x 2 Example 3.9. Express as one ln: 1 ln(1 + x2 ) − ln x − 2 ln sin(x) 3 1 (1 + x2 )1/3 ln(1 + x2 ) − ln x − 2 ln sin(x) = ln 3 x sin2 (x) 3.2.2 Derivative of the Natural Logarithm d 1 du (ln u) = · dx u dx d 1 [ln(g(x))] = · g 0 (x) dx g(x) 74 3.2 The Natural Logarithm Function Example 3.10. Find Brian E. Veitch d ln(tan x): dx d 1 d ln(tan x) = · [tan(x)] dx tan(x) dx 1 · sec2 (x) = tan(x) d Example 3.11. Find ln dx x+1 √ x−2 You can do this in two ways. We’ll do both though. The first way, we just differentiate using our current log derivative rule. 1. Take the derivative directly using the chain rule. 1 x+1 d x+1 d √ = ln √ · x + 1 dx dx x−2 x−2 √ x−2 √ 1 √ −1/2 x − 2 x − 2 · 1 − (x + 1) · 2 (x − 2) = · x+1 (x − 2) 1 (x − 2) − (x + 1) 2 = (x + 1)(x − 2) 1 x − 32 2 = (x + 1)(x − 2) 2. Rewrite ln x+1 √ x−2 as ln(x + 1) − 1 ln(x − 2) 2 Now differentiate, d ln dx x+1 √ x−2 75 = 1 1 − x + 1 2(x − 2) 3.2 The Natural Logarithm Function Brian E. Veitch Which one do you think was easier? Example 3.12. Find d (ln(tan(x))2 dx y 0 = 2 (ln tan(x)) · 1 · sec2 (x) tan(x) 1 d 2 x ln Example 3.13. Find dx x2 Use the product rule d 1 2 1 2 2 2 x ln = x · x · − + 2x · ln dx x2 x3 x2 1 = −2x + 2x · ln x2 = −2x(1 − 2 ln(x)) How could you make this problem a bit easier? You could rewrite the original problem. 2 Note, x ln 1 x2 = −2x2 ln(x), which is far easier to differentiate. −2x2 · 1 + (−4x) ln(x) = −2x − 4x ln(x) = −2x(1 − 2 ln(x)) x Example 3.14. Given f (x) = ln |x|, show f 0 (x) = 76 1 . x 3.2 The Natural Logarithm Function ln |x| = Brian E. Veitch ln x, x>0 ln(−x), x < 0 After you differentiate the piece-wise function, you get 1 , x>0 f 0 (x) = x 1 · (−1) = 1 , x < 0 −x x So what does this mean? 1. d 1 ln |x| = dx x Z 2. 3.2.3 1 dx = ln |x| + C x Logarithmic Differentiation We use this method when we need to take derivatives of complicated products or quotients. √ x x2 + 1 Example 3.15. Differentiate y = (x + 1)2/3 1. Take ln of both sides. ln y = ln ! √ x x2 + 1 (x + 1)2/3 = ln x + 1 2 ln(x2 + 1) − ln(x + 1) 2 3 77 3.2 The Natural Logarithm Function Brian E. Veitch This looks a bit nicer, right? 2. Differentiate both sides with respect to x 1 y 1 y dy 1 1 2 = + · 2x − 2 dx x 2(x + 1) 3(x + 1) dy 1 x 2 · = + 2 − dx x x + 1 3(x + 1) · Beats doing the quotient rule with a product rule and a chain rule! 3. Solve for dy dx 1 x 2 + − x x2 + 1 3(x + 1) √ 1 x 2 x x2 + 1 · + − = (x + 1)2/3 x x2 + 1 3(x + 1) dy = y dx I dare you to try this without logarithmic differentiation. Let’s move on to integration using ln x. Z Since we know 1 dx = ln |x|, let’s do some examples. x Z Example 3.16. Find 2x dx −5 x2 78 3.2 The Natural Logarithm Function Brian E. Veitch 1. Let u = x2 − 5 2. du = 2x dx 3. Make the substitution Z Z 2x 1 dx = du 2 x −5 u = ln |u| + C = ln(x2 − 5) + C Z 4 cos(x) dx 3 + 2 sin(x) Example 3.17. Find 1. Let u = 3 + 2 sin(x) 2. du = 2 cos(x) dx → 2du = 4 cos(x) dx 3. Make the substitution Z Z 4 cos(x) 2 dx = du 3 + 2 sin(x) u = 2 ln |u| + C = 2 ln(3 + 2 sin(x)) + C Z Example 3.18. Find tan(x) dx 1. We can’t do much with tan(x). Let’s rewrite tan(x) = Z 2. So Z tan(x) dx = sin(x) dx cos(x) 79 sin(x) cos(x) 3.2 The Natural Logarithm Function Brian E. Veitch 3. Let u = cos(x) 4. du = − sin(x) dx → −du = sin(x) dx 5. Make the substitution Z Z sin(x) dx cos(x) Z 1 = (−du) u Z 1 = − du u = − ln |u| + C tan(x) dx = = − ln | cos(x)| + C = ln |(cos(x))−1 | + C = ln | sec(x)| + C Z Example 3.19. Evaluate 1 2 4 + u2 du u3 This problem doesn’t have any trick to it. We just need to break it up into two fractions. 1. Break it up into two separate fractions Z 1 2 4 + u2 du = u3 Z 1 2 4 1 + du 3 u u 2. At this point, just integrate like you normally would. 80 3.2 The Natural Logarithm Function Z 2 1 Brian E. Veitch 4 1 + du = 3 u u Z 2 1 du u 1 2 = −2u−2 + ln |u|1 −2 −2 = + ln(2) − + ln(1) 22 11 3 + ln(2) = 2 Z Example 3.20. Evaluate e 6 4u−3 + dx x ln x 1. This is a substitution problem. 2. Let u = ln(x). 3. Why u = ln(x)? Because du = 1 dx and that’s also in the integral. x 4. Since it’s a definite integral, we need to change the limits of integration If x = e, u = ln(e) = 1 If x = 6, u = ln(6) 5. Make the substitution Z e 6 dx = x ln x Z 1 ln(6) 1 du u = ln |u||ln(6) 1 = ln | ln(6)| − ln | ln(1)| = ln | ln(6)| 81
© Copyright 2026 Paperzz