Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016 Electronic supplementary information (ESI) for the manuscript: Self-metathesis of 1-butene to propene over SBA-15-supported WO3 Gang Chen, a,b Mei Dong,*a Junfen Li,a Zhiwei Wu,a Guofu Wang,a Zhangfeng Qin,a Jianguo Wang,a and Weibin Fan*a aState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China bGraduate University of the Chinese Academy of Sciences, Beijing 100049, China * Corresponding author: [email protected], [email protected] Table of contents Table S1. H2-TPR quantitative analysis results of WO3-containing catalysts. Fig. S1. Small-angle XRD patterns of SBA-15, WO3/SBA-15, WO3/SBA-15-700 and WO3-SBA-15-700. Fig. S2. Small-angle XRD patterns of WO3-SBA-15-x (x represents the calcination temperature, oC). Fig. S3. N2 adsorption/desorption isotherms of SBA-15, WO3/SBA-15, WO3/SBA-15700 and WO3-SBA-15-700. Fig. S4. Pore size distribution of SBA-15, WO3/SBA-15, WO3/SBA-15-700 and WO3SBA-15-700. Fig. S5. N2 adsorption/desorption isotherms of WO3-SBA-15-x (x represents the calcination temperature, oC). Fig. S6. Pore size distributions of WO3-SBA-15-x (x represents the calcination temperature, oC). Fig. S7. 2-Butene/1-butene ratios obtained at different reaction time over WO3-SBA15-700 (■) and its reduced counterpart in H2 at 550 oC for 3 h (●) (reaction conditions: 350 oC, 0.1 MPa, WHSV=1 h-1). Fig. S8. Relationships between 1-butene conversion and Brönsted acid amount of WO3-SBA-15-x samples. Scheme S1. Pathway for formation of formaldehyde and W=CHCH2CH3 species over WO3-SBA-15-700. Scheme S2. Pathway for formation of acetaldehyde and W=CHCH3 species over WO3-SBA-15-700. Scheme S3. Pathway for formation of propylaldehyde and W=CH2 species over WO3- SBA-15-700. Table S1. H2-TPR quantitative analysis results of WO3-containing catalysts. Samples Peak position(oC) H2 uptake (μmol/g) Theoretical H2 uptake (μmol/g)a Reduction degree 730,773 800.5 2566.9 31.19% WO3/SBA-15-700 648, 721, 781 1291.4 2506.5 52.52% WO3-SBA-15-700 457, 609, 732 453.9 2390.7 18.99% WO3/SBA-15 aTheoretical H2 uptake was determined as the quantity of H2 required for the total reduction of WO3 in the catalysts to W0. SBA-15 WO3/SBA-15 (100) Intensity (a.u.) WO3/SBA-15-700 (110) (200) 1 WO3-SBA-15-700 2 3 4 2 Theta (degree) 5 Fig. S1. Small-angle XRD patterns of SBA-15, WO3/SBA-15, WO3/SBA-15-700 and WO3SBA-15-700. Intensity (a.u.) (100) (110) (200) o C 400 500 600 700 800 1 2 3 4 2 Theta (degree) 5 Fig. S2. Small-angle XRD patterns of WO3-SBA-15-x (x represents the calcination temperature, oC). V (cm3/g) SBA-15 WO3/SBA-15 WO3/SBA-15-700 WO3-SBA-15-700 0.0 0.2 0.4 0.6 0.8 1.0 P/P0 Fig. S3. N2 adsorption/desorption isotherms of SBA-15, WO3/SBA-15, WO3/SBA-15-700 and WO3-SBA-15-700. Pore volume (cm3/g) 15 SBA-15 WO3/SBA-15 WO3/SBA-15-700 WO3-SBA-15-700 10 5 0 1 10 100 Pore diameter (nm) Fig. S4. Pore size distribution of SBA-15, WO3/SBA-15, WO3/SBA-15-700 and WO3-SBA15-700. 500 oC 700 V (cm3/g) 400 600 800 0.0 0.2 0.4 0.6 P/P0 0.8 1.0 Fig. S5. N2 adsorption/desorption isotherms of WO3-SBA-15-x (x represents the calcination temperature, oC). Pore volume (cm3/g) 15 o 400 600 800 10 C 500 700 5 0 1 10 Pore diameter (nm) 100 Fig. S6. Pore size distributions of WO3-SBA-15-x (x represents the calcination temperature, oC). 2-Butene/1-butene 2.0 1.5 1.0 0.5 Before reduction After reduction 0 5 10 15 20 Time-on-stream (h) 25 Fig. S7. 2-Butene/1-butene ratios obtained at different reaction time over WO3-SBA-15-700 (■) and its reduced counterpart in H2 at 550 oC for 3 h (●) (reaction conditions: 350 oC, 0.1 MPa, WHSV=1 h-1). 70 1-Butene conv. (%) 60 50 40 30 20 10 20 40 60 80 100 Brö nsted acid amount (mol/g) Fig. S8. Relationships between 1-butene conversion and Brönsted acid amount of WO3-SBA15-x samples. CH2=CHCH2CH3 CH2-CH2CH2CH3 CH2=CHCH2CH3 OH O O=W O O Si OH O W=O O=W O O Si Si O CH2-CH2CH2CH3 O O O O Si O=W O O Si Si O W=O O Si CH2 O CHCH2CH3 O O CH CH2CH3 W OH O=W W OH O=W O denoted to O O O O O CHCH2CH3 Si Si HCHO Si Si [W] H W O O W=O O Si = O=W O Scheme S1. Pathway for formation of formaldehyde and W=CHCH2CH3 species over WO3SBA-15-700. CH2=CHCH2CH3 CH3CH=CHCH3 O O Si W=O O=W O O Si Si CH3CH-CHCH3 O O O=W O Si O W O O Si H O W=O OH O O=W O O Si Si O W=O CH3CH-CH2CH3 O O=W O O Si Si O O W=O O Si CH3 CH O CHCH3 O O CH CH3 W OH denoted to O=W W OH O=W O O O O CHCH3 O O Si Si CH3CHO [W] Si Si = O=W OH O OH O CH3CH=CHCH3 Scheme S2. Pathway for formation of acetaldehyde and W=CHCH3 species over WO3-SBA15-700. OH O O=W O O Si O O=W O Si O W O O=W O O Si Si H O O O Si Si O W O Si O W=O O Si Si OH O O=W O CH3CH2CH O O CH2 O=W CH3CH2CH-CH3 OH O W=O CH3CH2CH-CH2 O CH3CH2CH=CH2 O O=W O CH3CH2CHO Si O W=O O Si CH2 O W OH O denoted to CH2 Si [W] = CH3CH2CH=CH2 Scheme S3. Pathway for formation of propylaldehyde and W=CH2 species over WO3-SBA15-700.
© Copyright 2026 Paperzz