Self-metathesis of 1-butene to propene over SBA-15

Electronic Supplementary Material (ESI) for Catalysis Science & Technology.
This journal is © The Royal Society of Chemistry 2016
Electronic supplementary information (ESI) for the manuscript:
Self-metathesis of 1-butene to propene over SBA-15-supported WO3
Gang Chen, a,b Mei Dong,*a Junfen Li,a Zhiwei Wu,a Guofu Wang,a Zhangfeng Qin,a Jianguo
Wang,a and Weibin Fan*a
aState
Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of
Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
bGraduate
University of the Chinese Academy of Sciences, Beijing 100049, China
* Corresponding author: [email protected], [email protected]
Table of contents
 Table S1. H2-TPR quantitative analysis results of WO3-containing catalysts.
 Fig. S1. Small-angle XRD patterns of SBA-15, WO3/SBA-15, WO3/SBA-15-700 and
WO3-SBA-15-700.
 Fig. S2. Small-angle XRD patterns of WO3-SBA-15-x (x represents the calcination
temperature, oC).
 Fig. S3. N2 adsorption/desorption isotherms of SBA-15, WO3/SBA-15, WO3/SBA-15700 and WO3-SBA-15-700.
 Fig. S4. Pore size distribution of SBA-15, WO3/SBA-15, WO3/SBA-15-700 and WO3SBA-15-700.
 Fig. S5. N2 adsorption/desorption isotherms of WO3-SBA-15-x (x represents the
calcination temperature, oC).
 Fig. S6. Pore size distributions of WO3-SBA-15-x (x represents the calcination
temperature, oC).
 Fig. S7. 2-Butene/1-butene ratios obtained at different reaction time over WO3-SBA15-700 (■) and its reduced counterpart in H2 at 550 oC for 3 h (●) (reaction conditions:
350 oC, 0.1 MPa, WHSV=1 h-1).
 Fig. S8. Relationships between 1-butene conversion and Brönsted acid amount of
WO3-SBA-15-x samples.
 Scheme S1. Pathway for formation of formaldehyde and W=CHCH2CH3 species over
WO3-SBA-15-700.
 Scheme S2. Pathway for formation of acetaldehyde and W=CHCH3 species over
WO3-SBA-15-700.
 Scheme S3. Pathway for formation of propylaldehyde and W=CH2 species over WO3-
SBA-15-700.
Table S1. H2-TPR quantitative analysis results of WO3-containing catalysts.
Samples
Peak
position(oC)
H2 uptake
(μmol/g)
Theoretical H2
uptake (μmol/g)a
Reduction
degree
730,773
800.5
2566.9
31.19%
WO3/SBA-15-700
648, 721, 781
1291.4
2506.5
52.52%
WO3-SBA-15-700
457, 609, 732
453.9
2390.7
18.99%
WO3/SBA-15
aTheoretical
H2 uptake was determined as the quantity of H2 required for the total reduction of
WO3 in the catalysts to W0.
SBA-15
WO3/SBA-15
(100)
Intensity (a.u.)
WO3/SBA-15-700
(110)
(200)
1
WO3-SBA-15-700
2
3
4
2 Theta (degree)
5
Fig. S1. Small-angle XRD patterns of SBA-15, WO3/SBA-15, WO3/SBA-15-700 and WO3SBA-15-700.
Intensity (a.u.)
(100)
(110) (200)
o
C
400
500
600
700
800
1
2
3
4
2 Theta (degree)
5
Fig. S2. Small-angle XRD patterns of WO3-SBA-15-x (x represents the calcination
temperature, oC).
V (cm3/g)
SBA-15
WO3/SBA-15
WO3/SBA-15-700
WO3-SBA-15-700
0.0
0.2
0.4
0.6
0.8
1.0
P/P0
Fig. S3. N2 adsorption/desorption isotherms of SBA-15, WO3/SBA-15, WO3/SBA-15-700
and WO3-SBA-15-700.
Pore volume (cm3/g)
15
SBA-15
WO3/SBA-15
WO3/SBA-15-700
WO3-SBA-15-700
10
5
0
1
10
100
Pore diameter (nm)
Fig. S4. Pore size distribution of SBA-15, WO3/SBA-15, WO3/SBA-15-700 and WO3-SBA15-700.
500 oC
700
V (cm3/g)
400
600
800
0.0
0.2
0.4
0.6
P/P0
0.8
1.0
Fig. S5. N2 adsorption/desorption isotherms of WO3-SBA-15-x (x represents the calcination
temperature, oC).
Pore volume (cm3/g)
15
o
400
600
800
10
C
500
700
5
0
1
10
Pore diameter (nm)
100
Fig. S6. Pore size distributions of WO3-SBA-15-x (x represents the calcination temperature,
oC).
2-Butene/1-butene
2.0
1.5
1.0
0.5
Before reduction
After reduction
0
5
10
15
20
Time-on-stream (h)
25
Fig. S7. 2-Butene/1-butene ratios obtained at different reaction time over WO3-SBA-15-700
(■) and its reduced counterpart in H2 at 550 oC for 3 h (●) (reaction conditions: 350 oC, 0.1
MPa, WHSV=1 h-1).
70
1-Butene conv. (%)
60
50
40
30
20
10
20
40
60
80
100
Brö nsted acid amount (mol/g)
Fig. S8. Relationships between 1-butene conversion and Brönsted acid amount of WO3-SBA15-x samples.
CH2=CHCH2CH3
CH2-CH2CH2CH3
CH2=CHCH2CH3
OH
O
O=W
O
O
Si
OH
O
W=O
O=W
O
O
Si
Si
O
CH2-CH2CH2CH3
O
O
O
O
Si
O=W
O
O
Si
Si
O
W=O
O
Si
CH2
O
CHCH2CH3
O O
CH CH2CH3
W OH
O=W
W OH
O=W
O
denoted to
O
O
O
O
O
CHCH2CH3
Si
Si
HCHO
Si
Si
[W]
H
W O
O
W=O
O
Si
=
O=W
O
Scheme S1. Pathway for formation of formaldehyde and W=CHCH2CH3 species over WO3SBA-15-700.
CH2=CHCH2CH3
CH3CH=CHCH3
O
O
Si
W=O
O=W
O
O
Si
Si
CH3CH-CHCH3
O
O
O=W
O
Si
O
W O
O
Si
H
O
W=O
OH
O
O=W
O
O
Si
Si
O
W=O
CH3CH-CH2CH3
O
O=W
O
O
Si
Si
O
O
W=O
O
Si
CH3 CH
O
CHCH3
O O
CH CH3
W OH denoted to
O=W
W OH
O=W
O
O
O
O
CHCH3
O
O
Si
Si
CH3CHO
[W]
Si
Si
=
O=W
OH
O
OH
O
CH3CH=CHCH3
Scheme S2. Pathway for formation of acetaldehyde and W=CHCH3 species over WO3-SBA15-700.
OH
O
O=W
O
O
Si
O
O=W
O
Si
O
W O
O=W
O
O
Si
Si
H
O
O
O
Si
Si
O
W
O
Si
O
W=O
O
Si
Si
OH
O
O=W
O
CH3CH2CH
O O
CH2
O=W
CH3CH2CH-CH3
OH
O
W=O
CH3CH2CH-CH2
O
CH3CH2CH=CH2
O
O=W
O
CH3CH2CHO
Si
O
W=O
O
Si
CH2
O
W OH
O
denoted to
CH2
Si
[W]
=
CH3CH2CH=CH2
Scheme S3. Pathway for formation of propylaldehyde and W=CH2 species over WO3-SBA15-700.