MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS MATH 2260 Assignment 1 Winter 2014 SOLUTIONS [5] 1. (a) We use integration by parts, with w = ln(x) so dw = x1 dx and dv = x2 so v = 13 x3 . Thus we can write Z Z 1 3 1 1 2 x ln(x) dx = x ln(x) − x3 · dx 3 3 x Z 1 1 x2 dx = x3 ln(x) − 3 3 1 3 1 1 3 = x ln(x) − x +C 3 3 3 1 1 = x3 ln(x) − x3 + C. 3 9 [5] (b) We use integration by parts again, this time letting w = x2 so dw = 2x dx and dv = sin(x) dx so v = − cos(x). Thus we have Z Z 2 2 x sin(x) dx = −x cos(x) + 2 x cos(x) dx. Now we need to use integration by parts again, with w = x so dw = dx and dv = cos(x) dx so v = sin(x). Hence Z Z 2 2 x sin(x) dx = −x cos(x) + 2 x sin(x) − sin(x) dx = −x2 cos(x) + 2x sin(x) − 2[− cos(x)] + C = −x2 cos(x) + 2x sin(x) + 2 cos(x) + C. [5] (c) We can write 5 4x + 4x + 10 = 4 x + x + 2 1 9 2 =4 x +x+ + 4 4 2 1 =4 x+ +9 2 2 2 = (2x + 1)2 + 9. –2– Thus we can let u = 2x + 1 so 21 du = dx, and the integral becomes Z Z 1 1 dx = dx 2 4x + 4x + 10 (2x + 1)2 + 9 Z 1 1 du = 2 2 u +9 u 1 1 = · arctan +C 2 3 3 1 2x + 1 = arctan + C. 6 3 [5] (d) We can rewrite the given integral as Z Z 5 2 5 ln(tan(y)) sec (y)e dy = sec2 (y)eln(tan (y)) dy Z = tan5 (y) sec2 (y) dy. Now we let u = tan(y) so du = sec2 (y) dy. The integral becomes Z Z 2 5 ln(tan(y)) sec (y)e dy = u5 du 1 = u6 + C 6 1 = tan6 (y) + C. 6 [5] (e) First note that x3 − 4x2 − 16x + 64 = x2 (x − 4) − 16(x − 4) = (x − 4)(x2 − 16) = (x + 4)(x − 4)2 . Now we can decompose the integrand into partial fractions: A B D −1 1 3 11x − 20 = + + = + + . 2 2 (x + 4)(x − 4) x + 4 x − 4 (x − 4) x + 4 x − 4 (x − 4)2 Hence the integral becomes −1 1 3 + + dx x + 4 x − 4 (x − 4)2 3 = − ln|x + 4| + ln|x − 4| − + C. x−4 11x − 20 dx = 3 x − 4x2 − 16x + 64 [5] (f) Let u = t3 so 1 3 Z du = t2 dt. The integral becomes Z Z Z 1 5 t3 3 t3 2 t e dt = t e · t dt = ueu du. 3 –3– Now we use integration by parts with w = u so dw = du and dv = eu du so v = eu . Then we have Z Z 1 u u 5 t3 ue − e du t e dt = 3 1 1 = ueu − eu + C 3 3 1 1 3 3 = t3 et − et + C. 3 3 [5] (g) Again we decompose the integrand into partial fractions: 2x3 + 8x + 4 A B Dx + E 2 1 1 2x3 + 8x + 4 = = + 2+ 2 = + 2− 2 . 4 2 2 2 x + 4x x (x + 4) x x x +4 x x x +4 Thus Z [5] 2x3 + 8x + 4 dx = x4 + 4x2 Z 1 1 2 + − dx x x2 x2 + 4 x 1 1 + C. = 2 ln|x| − − arctan x 2 2 (h) We use integration by parts with w = e2x so dw = 2e2x dx and dv = cosh(3x) dx so v = 13 sinh(3x). Then Z Z 1 2x 2 2x e cosh(3x) dx = e sinh(3x) − e2x sinh(3x) dx. 3 3 Now we use integration by parts a second time, again with w = e2x so dw = 2e2x dx but this time with dv = sinh(3x) dx so v = 13 cosh(3x). We have Z Z 1 2x 2 1 2x 2 2x 2x e cosh(3x) dx = e sinh(3x) − e cosh(3x) − e cosh(3x) dx 3 3 3 3 Z 1 2x 2 2x 4 = e sinh(3x) − e cosh(3x) + e2x cosh(3x) dx 3 9 9 Z 5 1 2 e2x cosh(3x) dx = e2x sinh(3x) − e2x cosh(3x) + C 9 3 9 Z 3 2 e2x cosh(3x) dx = e2x sinh(3x) − e2x cosh(3x) + C. 5 5
© Copyright 2026 Paperzz