(Re)EngineeringBiologyAbstracts April15-16,2016 CenterforPhilosophyofScience Non-traditionalEngineeringofDesiredWeakEmergentPropertiesofSyntheticCells MarkA.Bedau Variouskindsofsyntheticcellsareproducedinsyntheticbiology.Top-downsynthetic biologygeneticallymodifiessimplenaturalcellularlifeformstomake(partly)synthetic cells.Bottom-upsyntheticbiologyusesnonlivingmaterialstomakesyntheticprotocells. Bothformsofsyntheticbiologyengineersyntheticcellssothattheyhavecertaindesired globalproperties.Thosepropertiesaretypicallyproducedbyverycomplexcausalwebs, andsomecallthem“weak”emergentproperties(Bedau1997).Syntheticbiologyusesmany methodsadaptedfromtraditionalengineeringtocreatedesiredemergentproperties, includingEdisoniantrialanderror(Martinetal.2003),standardizedgeneticcomponents (Mutaliketal.2013a,b),genomerefactoring(Temmeetal.2012),andsyntheticgenomes (Gibsonetal.2010).Butitusesengineeringmethodsthatarenon-traditional.Onenontraditionalmethodisinvitro(directed)evolution,whichproducesdesiredgeneticmaterial throughanartificialevolutionaryprocess(e.g.,Yokobayashietal.2002).Othermethods applytoolsfromcontemporarymachinelearning(Cascheraetal.2011),andsimilarnontraditionalmethodscouldbeadaptedtosystemsbiologyandbio-medicalengineering.Both methodsareespeciallyusefulforengineeringdesiredweakemergentproperties,becauseof thecomplexcausalwebsunderlyingtheseproperties.Thenon-traditionalmethodsexplain thecentralroleofsynthesisinsyntheticbiology. WhyPhytobricks?:Howsyntheticbiologistsareengineeringplants DominicBerry Themajorityoflaboratoryworkwithinsyntheticbiologyhasbeendirectedtowardssinglecelledorganisms,butfromtheoutsetsynbiohaspromisedtorevolutionisethe manipulationanddesignofmorecomplexorganisms.Inrecentyearseffortshavebeen madetointegrateacadreofplantscientists,andthemostconspicuousaspectofthiswork istheintroductionofanewiGEMtrackdedicatedentirelytoplantsyntheticbiology,which willbelaunchedintimeforthe2016jamboree.TheiGEM(InternationalGenetically EngineeredMachine)competitionisaninternationalstudentcompetitionthathasrun annuallysince2003.Thegrowthofthelatter,whichtodayinvolvesthousandsofstudents andhundredsofinstitutions,andtheintegrationofmorecomplexorganisms,aretakento demonstratesynbio'sflourishing. However,atthesametimeasplantscienceisbeingintegratedintosynbio,thereisalso evidencethatplantscientistsaremaintainingadistinctidentityforthemselveswithin syntheticbiology.Basedoninterviewswiththosescientistsresponsibleforcreatingthe plantiGEMtrack,andlaboratoryobservationsofplantsynbioinpractice,thispaperis dedicatedtoansweringthequestion:inafieldinspiredbyengineeringidealssuchas modularityandorthogonality,whyPhytobricks? 1 TheSyntheticMethodbetweenEngineeringandScience:Anewparadigmforthescientific explorationofthefrontiersoflife? LeonardoBichandLuisaDamiano Thistalkwillfocusonthesyntheticmethod,anemergingapproachatthecrossroads betweenengineeringandsciencethatdevelopspioneeringinsightsfromorganizational biology,cyberneticsandsystemstheory.Thespecificityofthismethod,basedontheideaof ‘understandingbybuilding’,isthatitdirectlyinvolvesengineeringintothescientific comprehensionofbiologicalprocessesthroughtheconstructionof‘syntheticmodels’: ‘functioningartefacts’thatincorporatescientifichypothesestoproducethephenomena underinquiry,andcanbeusedasmeanstotesttheunderlyingtheories. Inthispresentationwewillmarkoutthetheoretical,epistemologicalandmethodological featuresofthisapproach,illustratinghowitcanbeconsideredcapabletogenerateanew researchparadigmforbiology:newmethodologicalproceduresassociatedtonew theoreticalandepistemologicalframeworks.Wewillsupportouranalysisbyfocusingon casestudiesfromresearchonminimallife,i.e.,currentstudiesoncompartmentsinvolving differentformsofsyntheticmodelling.Themaingoalsaretwo: -Toidentifylimitsandpossibilitiesoftheseapplicationsofthesyntheticmethodthrough comparisonswithothermethodologicalapproachesintegratingengineeringintobiology; -Toestablishwhetherinthiscontextwecantalkofanewandpluralistresearchparadigm, oratransitiontowardsit. AnEngineeringParadigm:Whoseparadigm? MiekeBoon Astheorganizersofthisconferencesuggests,therearegoodreasonstotalkaboutan engineeringparadigm,ratherthanconsideringthelife-sciencesasfundamentallydifferent tootherexperimentalsciencesastheybringengineeringapproachestobiology.Inthis paper,Iwillfocusontheparadigmofsciencemaintainedbyphilosophers.Thisparadigm determineswhichproblems,ideas,approachesandanswersareconsideredrelevantand adequateinthephilosophyofscience.Indeed,theshifttowardsanengineeringparadigmis obviousfromchangesofconceptsemployedbyphilosopherswhentheytalkaboutthelife sciences.Therecognitionbyphilosophersthatscientificpracticessuchasthelifesciences incorporateengineeringapproaches,hasseveralofthetypicalcharacteristicsofachanging paradigm.Thispaperaimstoanalyzethecontentandappropriatenessoftheemerging engineeringparadigm,focusingontypicalKuhnianaspectssuchas:ontological presuppositionsonthegeneralsubject-matterstudiedinexperimentalsciences; fundamentalepistemologicalvalues;normativeideasontheaimsofscience;assumptions onthecharacterofscientificknowledge;andparadigmexamplesofscience.Itwillbe defendedthat,inmanycases,theengineeringparadigmismoreappropriatefor understandingbothcontemporaryandhistoricalscientificpractices. NatureasaToolbox:ANewLookattheConceptofLevelsofOrganization DanielBrooks Despiteitspervasiveness,theconceptof‘levelsoforganization’hasreceivedlittleattention initsownright.InthispresentationIwillarguethat,contrarytorecentclaimsofits 2 uselessness,the'levels'conceptcaneasilyberevealedasauniquelyeffectiveandflexible conceptualtooltailoredtoperformawidehostofscientifictasks.Indeed,farfromany reified“layer-cake”image,'levels'asdepictedinactualscientificusagearguablyrepresents natureitselfasatoolbox,fromwhichscientistsarefreetoselectthepartswithwhichto constructtheirsolutionstotheproblemstheyengageintheirinvestigations. Thekeytothisapproachwillbeausage-basedreconstructionof'levels’thatrevealsa fragmentaryconceptthatbalancesastrikingvariationinconceptualcontentbetween instancesofusewitharemarkablyconservedandunifyingsignificanceattributedtoit acrosstheseinstances.Thissignificance,capturedbythe“epistemicgoal”motivatingits usage,isitsabilitytostructureexplanatoryproblems.Thisheuristic,usage-basedtreatment oflevelsdoesnotdiminishtheconcept'sgeneralimportancetoscience,butratherallows foritsusein,andusefulnessfor,scientificpracticetobebettercontextualizedtoparticular tasksencompassingvaryingbreadthsofactivity. CrashTestinganEngineeringFrameworkinNeuroscience:WhenDoestheIdeaof RobustnessBreakDown? MazviitaChirimuuta InthispaperIdiscusstheconceptofrobustnessinneuroscience.SystemsbiologistKitano (2004)definesrobustnessas,“apropertythatallowsasystemtomaintainitsfunctions againstinternalandexternalperturbations.”Thus,inordertodeterminewhetherornota systemisrobust,onemustspecifyitsfunction,andalsospecifythekindsofperturbationit faces.Variousmeansformakingsystemsrobusthavebeendiscussedacrossbiologyand neuroscience(e.g.copyredundancyandfail-safes).Itisobvious,butstillworth emphasising,thatmanyofthesenotionsoriginatefromengineering. Iwillarguethattheframeworkborrowedfromengineeringaidsneuroscientistsin(1) operationalizingrobustness;(2)formulatinghypothesesabouthowthesystemachieves robustness;and(3)showinghowrobustnessmaybepreciselyquantified.Furthermore,I willarguethattheuseoftheengineeringframeworkinneurosciencegetsstretched, perhapstobreakingpoint,whenappliedtosystemswhere(1)thereisnoprincipled distinctionbetweenprocessesforrobustnessandprocesseswhichcontinuallymaintainthe lifeofthecell;(2)whereperturbationsarearegularoccurrenceratherthananomalous events;and(3)whereoneshouldnotconceiveofthesystemasseekingtomaintainasteady state(O’Learyetal). ReprogrammingandtheRepressilator MelindaFagan Syntheticbiologyistoutedbyproponentsasanovelapproachtostudyinglife.However, somephilosophershavenotedsignificantcontinuitieswithexperimentalbiology(O’Malley 2009,Bechtel2011,KnuutilaandLoettgers2013).Thispaperbuildsontheirargumentsby comparinganexemplarofsyntheticbiology,theRepressilator,toinducedpluripotentstem celllines(iPSC)producedby“directreprogramming”–atraditionalexperimentalmethod. Thisfocusedcomparisonexhibitssignificantcontinuitiesbetweensyntheticand experimentalbiology.Thetwocasesinvolveverysimilaraims,biologicalmaterials,‘wet’ experimentalmethods,andresults.BoththeRepressilatorandreprogrammediPSCare 3 engineeredsystemsconsistingofgeneticregulatorynetworksconstructedandinsertedinto culturedcells,whichinducechangesincellphenotype. Thesemethodologicalparallelsundercutthedistinctionbetweensyntheticandtraditional biologyintermsof“forward-andreverse-engineering.”However,therearesomeimportant differencesbetweenthetwocases.TheRepressilatorandcellreprogramming,Iargue, differwithrespectto(i)thesourceoftranscriptionnetworkorganization,and(ii)theroles ofpre-defined‘programs’inconstructingthesystemandgeneratingresults.Idiscusssome broaderimplicationsoftheseresults,withemphasisonthesocialorganizationof ‘engineeringbiosciences.’ CrosscuttingBiologyandEngineeringviaFractals LuisFavela Fractalsareapotentiallyrichsourceoftheoriesandmethodsthatcanfacilitate interdisciplinaryworkamongbiologistsandengineers.Fractalsarescale-free,self-similar structures,wherebytheglobalstructureismaintainedatvariousscalesofspatialand temporalobservation.Fractalmethodscanmathematicallyrevealstructureinvariability thatisoftendisregardedasnoiseor“averagedaway”bytraditionallinearandadditive statisticalanalyses.Assuch,phenomenacanbemisrepresentedifoutliersaretrimmedor areunderstoodsolelyintermsoftheaverageofitsfeatures.Fractalanalysesare,atleastin somecases,bettersuitedtocapturephenomenathatdonotconformtoGaussian distributions.Engineershaveappliedfractalanalysestoworkonantennasignals,forceon chainsandtheireffectonmaterials,Internettraffic,andurbanstructureplanning. Biologistshaveappliedfractalanalysestoresearchontreeandbronchialtubebranching, neurondendrites,breathing,andheartbeats.Asisevidentbythisbrieflistofexamples, fractalconceptsandmethodsaresubstrateneutralandcanfacilitateunderstanding regardlessofthematerialcompositionorcausalmechanismsrelatedtoaphenomenon. Thesebenefitsmakefractalsagoodcontenderforfacilitatinginterdisciplinaryworkamong biologistsandengineers. ReconcilingSpecialtiesofEngineeringandBiology ElihuGersonandAlokSrivastava Participationofmultiplespecialtiesinasingleprojectraisespotentialproblemsof cooperationthatmustbereconcilediftheprojectistocontinue.Participatingspecialties facetrade-offsposedbytheneedtoaccommodateothers.Understandingthereconciliation processinageneralwayrequiresdevelopingmeansforanalyzingthesetrade-offsthatare notlimitedtoparticularcontexts.Wesuggesttwodimensionsofsuchcontexts.The explicationspectrumliststhephasesaresearchprojectmightenteroverthecourseofits life.Thetranslationspectrummarksthedistinctionsseparatingbasicresearchresultsfrom productsorservicesingeneraluse. Understandingthewaysinwhichdifferentspecialtiesinfluenceoneanotherdependsonthe waysthatresearchersnegotiateandrevisetheirownapproachesastheylearnthelimits, requirements,andpotentialofcomplementaryapproaches.Researchersemploymany tacticstoaligntheirpositionsontheexplicationandtranslationdimensions.Twokindsof reconciliationtacticseemtobeespeciallycommon:developingappropriatestandardsand creatingcoordinationmechanisms.Thereconciliationtacticsusedareimprovedovertime, 4 sothatjointresearchbecomesbetterintegratedandmorereliable.Weillustrateour approachwithexamplesofstandardizationprocessesandcoordinationmechanismsdrawn fromvariousintersectionsofbiologyandengineering. TheMultifacetedPotentialofAffordance-basedReverseEngineeringinBiology DominicHalsmer Theconceptsofreverseengineeringandaffordanceshavebeencombinedtoproducea fruitfulsynergywiththepotentialforadvancingsystemsbiology.Theideaofaffordances hasfoundutility,notonlyindesignengineering,butalsoinaffordance-basedreverse engineering(ARE).Inthiscontext,anaffordanceissomethingthatisprovidedtotheend userofanengineereddevice,byvirtueofsomerelationshipbetweentheuserandthe device.Inmorecomplexsystems,thisisextendedtoincludearelationshipbetweenpartsof asystemthatplayaroleinultimatelyprovidingacapabilitytotheenduser.Thesepart-topartaffordancesarecriticalinanalyzingthedepthoffunctionalitythatcharacterizes biologicalsystems,especiallyatthemicroscopiclevel.Researchersinevolutionarybiology havealsofoundtheconceptofaffordancetobehelpfulinunderstandingtheevolutionary process.Affordancescanassistinclarifyingtheprocessofnicheconstruction.Hence,it seemsclearthatAREhasthepotentialtocontributeatboththemicroscopicand macroscopiclevels.Furthermore,affordancesmerelyprovideastatementofcapabilitythat persistsbecauseofkeybiologicalrelationships.Thus,itismetaphysicallyneutral,andas such,moreinkeepingwiththeconcernsandlimitsofscience. TheMachineAnalogyinSyntheticBiology SuneHolm Awidespreadandinfluentialcharacterizationofsyntheticbiologyemphasizesthat syntheticbiologyistheapplicationofengineeringprinciplestolivingsystems.Furthermore, thereisastrongtendencytoexpresstheengineeringapproachtoorganismsintermsof whatseemstobeanontologicalclaim:organismsaremachines.InthepaperIinvestigate theontologicalandheuristicsignificanceofthemachineanalogyinsyntheticbiology.I arguethattheuseofthemachineanalogyandtheaimofproducingrationallydesigned organismsdonotnecessarilyimplyacommitmenttotheidentityoforganismsand machines.Theidealofapplyingengineeringprinciplestobiologyisbestunderstoodas expressingrecognitionofthemachine-unlikenessofnaturalorganismsandthelimitsof humancognition.Thepapersuggestsaninterpretationoftheidentificationoforganisms withmachinesinsyntheticbiologyaccordingtowhichitexpressesastrategyfor representing,understanding,andconstructinglivingsystemsthataremoremachine-like thannaturalorganisms. AbstractionandModelConstructioninSystemsandSyntheticBiology TarjaKnuuttilaandAndreaLoettgers Theprevalentviewonabstractionamongphilosophersofscienceisthatofomission. Whereasidealizationsarethoughttointroducedistortionstoascientificrepresentation, abstractionisunderstoodintermsofabstractingawayfromthedetailsofasystem. Accordingtothistraditionamodelisahighlyselectivedepictionoftheunderlying 5 mechanismofaphenomenon,orsomebasiccausalfactors,takingintoaccountonlythose featuresthatmakeadifference. Wearguethattheideaofabstractionasomissiondoesnotoftencapturewhatgoesonin actualmodelconstruction.Fromtheperspectiveofmodelingheuristiconeshouldmakea distinctionbetweencasesinwhichoneabstractsawayfrommostofthedetailsofa phenomenonofinterestfromthosethatstartfromanabstractmathematicalmechanism describingageneralpatternofinteractionoftenadaptedfromotherscientificdisciplines— suchasphysicsandengineeringinthecaseofbiology.Wewillillustratethispointby examininghowsystemsbiologistUriAlonhasmadeuseofoptimalityprinciplesin modelinggeneregulatorynetworks. UsingEvolutiontoEngineerMicrobiomes NicolaeMorar&BrendanBohannan Theconceptof‘engineering’,whichimpliestheapplicationofsciencetosolvingcertain problemsinvolvedinthedesignofstructuresandsystemsthatrespondtohumanneeds, hasbeenrecentlyattachedtobiology,genetics,andecology.Twospecificwaysof engineeringbiologicalnetworkshaveemerged.Geneticengineeringconsistsofcreatingand programingcellstoperformparticularfunctions,e.g.releasequantitiesofinsulinwhena bodyneedsit.Incontrast,evolutionaryengineeringselectsforaparticularstateofa property(e.g.aparticularfunction),wherechangesinthe‘parts’andtheirinteractionsare occurringasaby-productofthisselection.Thesetwoformsofbiologicalengineeringare underlinedbytwodifferentlogics.Whiletheformerfocusesonselectingunitsoflife,the latterhighlightstheimportanceofevolutionaryconstraints.However,bothformsof engineeringhaveunderplayedtwoimportantfactsaboutanimalsandplants:1)organisms includeadiversecommunityofmicrobesthatcolonizethem&2)microbiomesarenot passiveplayersbutcontributetohostfunctionandfitness.Theengineeringofbiological systemscannolongeraffordtooverlooktheimportanceofmicrobialprocesses.Hence,our question:couldthemanipulationofthemicrobiomeofanorganismhaveaneffectonhost function,andthus,impacthostfitness? TheEpistemologyof‘GoodEnough’:PragmatismandEngineeringKnowledgeinSynthetic Biology PabloSchyfter Syntheticbiologyisafieldin-the-making,withoutanyconsensusidentity,ambitions, practices,orprinciples.However,onecontingentadvocateafieldof‘authentic’engineering withabiologicalsubstrate.Forthesepractitioners,settlingthefieldhingesondeliveringa newengineeringmodelledonandcongruouswiththeold. Asthesociologyofknowledgeandsciencestudieshavedemonstrated,epistemicsystems, practicesandproductsresultfromcollectivepractice,andcontributetotheformationof scientificandtechnologicalgroups.Assuch,thepursuitofengineeringstandingisinparta pursuitofengineeringknowledge. Sociologicalandphilosophicalstudiesofsyntheticbiologydemandanepistemologyof engineeringknowledge.IpositthatpragmatistepistemologyfromtheworksofJohnDewey 6 andWilliamJamescanserveinconcertwiththesociologyofknowledgetodevelopand deliveranepistemologyofknowledge-makingandknowledge-useinengineering. Engineeringknowledgeissomethingemployed,ratherthananendinitself.Pragmatism arguesthattruthfulnessisusefulness,andthesociologyofknowledgeenablesempirical studyofhowutilityisdefined,pursued,andevaluatedcollectively.Usingsyntheticbiology asacasestudy,Idemonstratethevalueinthisepistemologicalpartnership,andthe characterofengineeringknowledgeasknowledge‘goodenough’touse. UnderstandingBiologicalSystemsthroughMathematicalModeling EberhardO.Voit Thehallmarkofbiologicalsystemsiscomplexity,whichistheconsequenceofenormous numbersofmolecularcomponentsandnonlinearprocesses,non-intuitivesystem responses,thresholdeffects,andemergingpropertiesthatoftencannotfullybeexplained.A truecomprehensionofthiscomplexitywouldrequirecohesivetheories,whichhoweverdo notexistatpresent.Afirststeptowardsuchtheoriesistheexplorationofcomplexsystems withcomputationalmodels,whichcanaidourunderstandingofatleastcertainfeaturesof suchsystems.Iwilldiscussthefollowingaspectsofbiologicalsystemsmodeling: 1.Modelsarenon-unique;somearemoreusefulthanothers,iftheyanswerpertinent questions. 2.Modelsshouldbeinterlockingwithinbiologicallevels,butdifferingranularitybetween them. 3.Eachlevelmayrequireuniquemodelingframeworks;othermodeltypesmayconnect levels. 4.Modelsofbiologicalsystemscannotbeformulatedintermsoffirstprinciplesfrom physics,becausetheirgoverningprocessesaretooconvoluted. 5.Allbiologicalmodelsaremesoscopic;thereisnofeasiblebottomortop. 6.Engineeringapproachesmaybeuseful,butrequirecaution,becausethesuperposition principleseldomholdsinbiology. Iwillanalyzetheseaspectsanddemonstratethemwithmodelsinthecontextof schizophrenia. FundamentalEngineeringPrinciplesofNaturalandArtifactualDesign WilliamWimsatt Severalfeaturesaredeeplyanchoredcharacteristicsofbothnaturalevolvedandartifactual systems.Scaffoldingoccurswhenastructureorbehaviorisutilizedtomakepossible, easier,orfastertheattainmentofagoal.Generativeentrenchmentisthebuildingof dependentstructures,processesorbehaviors(SPB’s)onearlierSPB’sinawaythat facilitatestheiradditionto(andscaffolding)anadaptivestructure.Thistherebymakesthe primarySPB’smoreessential,theirlossmoresevereinitseffects,makingentrenched elementsmoreconservativeinevolutionaryprocesses,andaffectingmoreandlesslikely directionsofevolutionarychange.Scaffoldingandentrenchmentareendemictothe evolutionofcomplexsystems,inbiology,intechnology,incognition,andin culture.Robustnessistherelativeinsensitivityofsystemperformancetodifferent 7 arrangementsorspecificationsormodificationsofitsparts.Modularityisalastdesign principleofbiologicalandtechnologicalsystemsandfacilitatesindependentmodification andrecombinationtocreatenewkindsofsystems.Theselasttwoproperties,however,are realizedindifferentwaysinevolvedandartifactualsystems.Iconsidertheimplicationsof thesecharacteristicsforarchitecturalsimilaritiesanddifferencesbetweennewlydesigned engineeringartifactsandthosenaturalorartifactualsystemsthathaveundergonean evolutionaryprocesses,andhowthesefundamentalarchitecturalpropertiesthemselves evolve. 8
© Copyright 2026 Paperzz