08-035_08_AFSM_C08_001-026.qxd 7/19/08 8:41 PM function: y 5 20(8)x function: y 5 25x 2 3 D 5 5xPR6 R 5 5yPR0 y , 236 asymptote: y 5 23 inverse: y 5 log 8 Q R 20 inverse: y 5 log5 (2x 2 3) D 5 5xPR0 x , 236 R 5 5yPR6 asymptote: x 5 23 D 5 5xPR6 R 5 5yPR0 y . 06 asymptote: y 5 0 x D 5 5xPR0 x . 06 R 5 5yPR6 asymptote: x 5 0 e) Page 9 23. Given the constraints, two integer values are possible for y, either 1 or 2. If y 5 3, then x must be 1000, which is not permitted. y 16 12 8 y 52(3)x+2 4 x –8 –4 0 4 8 12 16 –4 x –8 y 5log3 (— 2 ( –2 function: y 5 2(3)x12 D 5 5xPR6 R 5 5yPR0 y . 06 asymptote: y 5 0 inverse: y 5 log 3 Q R 22 2 x D 5 5xPR0 x . 06 R 5 5yPR6 asymptote: x 5 0 y f) 2 –10 –8 –6 –4 –2 0 –2 y 525x23 –4 –6 –8 –10 y5log5(2x23) –12 –14 x 2 Advanced Functions Solutions Manual 8.4 Laws of Logarithms, pp. 475–476 1. a) log 45 1 log 68 b) logm p 1 logm q c) log 123 2 log 31 d) logm p 2 logm q e) log2 14 1 log2 9 f) log4 81 2 log4 30 2. a) log (7 3 5) 5 log 35 4 b) log3 5 log3 2 2 c) logm ab x d) log y e) log6 (7 3 8 3 9) 5 log6 504 (10 3 12) f) log4 a b 5 log4 6 20 3. a) 2 log 5 b) 21 log 7 c) q logm p 1 d) log 45 3 1 e) log7 36 2 1 f) log5 125 5 135 4. a) log3 135 2 log3 5 5 log3 5 5 log3 27 53 b) log5 10 1 log5 2.5 5 log5 (10 3 2.5) 5 log5 25 52 8-9 08-035_08_AFSM_C08_001-026.qxd 7/23/08 10:46 AM Page 10 c) log 50 1 log 2 5 log (50 3 2) 5 log 100 52 d) log4 47 5 7 log4 4 5731 57 224 e) log2 224 2 log2 7 5 log2 7 5 log2 32 55 1 f) log !10 5 log 10 2 1 5 a b (1) 2 1 5 2 5. y 5 log2 (4x) 5 log2 x 1 log2 4 5 log2 x 1 2, so y 5 log2 (4x) vertically shifts y 5 log2 x up 2 units; y 5 log2 (8x) 5 log2 x 1 log2 8 5 log2 x 1 3, so y 5 log2 (8x) vertically shifts y 5 log2 x up 3 units; y 5 log2 Q R 5 log2 x 2 log2 2 5 log2 x 2 1, so 2 x y 5 log2 Q R vertically shifts y 5 log2 x down 1 unit 2 x 6. a) log25 53 5 3 log25 5 log25 5; 25x 5 5; x 5 0.5 Therefore log25 53 5 3 log25 5 5 (3)(0.5) 5 1.5 (54 3 2) b) log6 54 1 log6 2 2 log6 3 5 log6 3 5 log6 36 52 c) log6 6 !6 5 log6 6 1 log6 !6 5 1 1 0.5 5 1.5 !36 d) log2 !36 2 log2 !72 5 log2 !72 1 5 log2 Å2 5 log2 220.5 5 20.5 3 e) log3 54 1 log3 a b 5 log3 54 1 log3 3 2 log3 2 2 5 log3 54 2 log3 2 1 1 54 11 5 log3 2 5 log3 27 1 1 5311 54 8-10 f) log8 2 1 3 log8 2 1 1 log8 16 2 5 log8 2 1 log8 23 1 log8 !16 5 log8 2 1 log8 8 1 log8 4 5 log8 2 1 log8 4 1 1 5 log8 (2 3 4) 1 1 5 log8 8 1 1 5111 52 7. a) logb x 1 logb y 1 logb z b) logb z 2 (logb x 1 logb y) c) logb x 2 1 logb y 3 5 2 logb x 1 3 logb y 1 d) logb "x 5yz 3 5 logb x 5yz 3 2 1 5 (logb x 5 1 logb y 1 logb z 3 ) 2 1 5 (5 logb x 1 logb y 1 3 logb z) 2 8. log5 3 means 5x 5 3 and log5 13 means 5y 5 13; since 13 5 321, 5y 5 5x(21); therefore, log5 3 1 log5 13 5 x 1 x(21) 5 0 9. a) 3 log5 2 1 log5 7 5 log5 23 1 log5 7 5 log5 8 1 log5 7 5 log5 (8 3 7) 5 log5 56 b) 2 log3 8 2 5 log3 2 5 log3 82 2 log3 25 5 log3 64 2 log3 32 64 5 log3 32 5 log3 2 c) 2 log2 3 1 log2 5 5 log2 32 1 log2 5 5 log2 9 1 log2 5 5 log2 (9 3 5) 5 log2 45 (12 3 2) d) log3 12 1 log3 2 2 log3 6 5 log3 6 5 log3 4 1 e) log4 3 1 log4 8 2 log4 2 2 5 log4 3 1 log4 !8 2 log4 2 (3 !8) 2 5 log4 (3 !2) f ) 2 log 8 1 log 9 2 log 36 5 log 82 1 log 9 2 log 36 5 log 64 1 log 9 2 log 36 (64 3 9) 5 log 36 5 log 16 5 log4 Chapter 8: Exponential and Logarithmic Functions 08-035_08_AFSM_C08_001-026.qxd 7/23/08 10:47 AM Page 11 10. a) log2 x 5 log2 72 1 log2 5 log2 x 5 log2 49 1 log2 5 log2 x 5 log2 (49 3 5) log2 x 5 log2 245 x 5 245 b) log x 5 log 42 1 log 33 log x 5 log 16 1 log 27 log x 5 log (16 3 27) log x 5 log 432 x 5 432 c) log4 x 5 log4 48 2 log4 12 48 log4 x 5 log4 12 log4 x 5 log4 4 x54 d) log7 x 5 log7 252 2 log7 53 log7 x 5 log7 625 2 log7 125 625 log7 x 5 log7 125 log7 x 5 log7 5 x55 e) log3 x 5 log3 102 2 log3 25 log3 x 5 log3 100 2 log3 25 100 log3 x 5 log3 25 log3 x 5 log3 4 x54 f) log5 x 5 log5 6 1 3 log5 2 1 log5 8 log5 x 5 log5 6 1 log5 23 1 log5 8 log5 x 5 log5 6 1 log5 8 1 log5 8 log5 x 5 log5 (6 3 8 3 8) log5 x 5 log5 384 x 5 384 11. a) log2 xyz uw b) log5 v a c) log6 a 2 log6 bc 5 log6 bc x 2y 2 5 log2 xy d) log2 xy e) log3 3 1 log3 x 2 5 log3 3x 2 x 3x 2 f) log4 x 3 1 log4 x 2 2 log4 y 5 log4 y x5 5 log4 y 1 1 12. loga x 5 loga !x; loga y 5 loga !y; 2 2 3 4 3 loga z 5 loga " z; 4 Advanced Functions Solutions Manual 1 1 3 loga x 1 loga y 2 loga x 2 2 4 4 3 5 loga !x 1 loga !y 2 loga " z So, 5 loga !x !y 4 3 " z 13. vertical stretch by a factor of 3 (the exponent that x is raised to); vertical shift 3 units up (the coefficient 8 divided by the base of 2) 14. Answers may vary. For example, f(x) 5 2 log x 2 log 12 x2 g(x) 5 log 12 2 log x 2 log 12 5 log x 2 2 log 12 x2 5 log 12 So, f(x) and g(x) have the same graph. 15. Answers may vary. For example, any number can be written as a power with a given base. The base of the logarithm is 3. Write each term in the quotient as a power of 3. The laws of logarithms make it possible to evaluate the expression by simplifying the quotient and noting the exponent. 16. logx x m21 1 1 5 m 2 1 1 1 5 m 17. logb x !x 5 logb x 1 logb !x 1 5 logb x 1 logb x 2 1 5 0.3 1 0.3a b 2 5 0.45 18. The two functions have different domains. The first function has a domain of x . 0. The second function has a domain of all real numbers except 0, since x is squared. 19. Answers may vary; for example, Product law log10 10 1 log10 10 5 1 1 1 52 5 log10 100 5 log10 (10 3 10) Quotient law log10 10 2 log10 10 5 1 2 1 50 5 log10 1 10 5 log10 a b 10 Power law log10 102 5 log10 100 52 5 2 log10 10 8-11
© Copyright 2026 Paperzz