Derivation of the Rydberg Constant An introduction to the Bohr Model of the Atom Empirical formula discovered by Balmer to describe the hydrogen spectra 1 1 1 = R 2 − 2 λ 2 n Lyman, Paschen, Brackett Pfund Series 1 1 1 = R 2 − 2 λ 1 n 1 1 1 = R 2 − 2 λ 2 n 1 1 1 = R 2 − 2 λ 3 n 1 1 1 = R 2 − 2 λ 4 n 1 1 1 = R 2 − 2 λ 5 n Energy of a photon hc Ei − E f = hf = λ Bohr Model hc Ei − E f = hf = λ E = KE + EPE Energy of an atom hc Ei − E f = hf = λ E = KE + EPE 1 2 kZe2 E = mv − 2 r Newtonian mechanics Fc = Fe Fnet equals Coulombic attraction Fc = Fe 2 mv kZe = 2 r r 2 Convenient expression Fc = Fe mv 2 kZe2 = 2 r r 2 kZe 2 mv = r Energy of an atom 1 2 kZe E = mv − 2 r 2 After simplification 2 1 2 kZe E = mv − 2 r 2 2 2 1 kZe kZe kZe E= − =− 2 r r 2r Recall rotational mechanics L = Iω 2 I = mr v ω= r L = mvr Bohr Postulate Electrons in a stable orbit do not radiate. That is, atoms are stable and do not collapse. Electrons in transition from a higher to a lower energy state radiate a photon of energy hf. Bohr Postulate h Ln = mvrn = n ;n = 1,2,3... 2π Angular Momentum h Ln = mvrn = n ;n = 1,2,3... 2π n h v= mrn 2π Combining expressions n h v= mrn 2π kZe mv = r 2 2 General formula for the radius 2 2 h n rn = 2 ;n = 1,2,3... 2 4π mke Z Bohr radius ( r1 = 5.29 ⋅10 −11 )m Energy levels of the atom 2 2 2 4 2 −kZe 2π mk e Z En = ⇒ − 2 2 2r h n Bohr Energy Levels 2π 2 mk 2 e4 Z 2 En = − 2 2 h n ( = −2.18 ⋅10 −18 Z J 2 n Z2 En = −13.6eV 2 n ( ) 2 ) Energy of a photon hc = ΔE = Ei − E f λ hc = ΔE = Ei − E f λ 2 2 4 1 2π mk e 2 1 1 = Z 2 − 2 3 λ hc n f ni ( ) Rydberg Constant! 1 1 1 2 = R Z 2 − 2 λ n f ni ( ) 7 R = 1.097 × 10 m −1 Limitations of the Bohr Model Works well for hydrogen, and for other single electron atoms, but not as well for helium and even less well for other atoms Based upon postulates that angular momentum is quantized
© Copyright 2026 Paperzz