Shell evolution in neutron rich nuclei Gustav R. Jansen1,2 [email protected] 1 University 2 Oak of Tennessee, Knoxville Ridge National Laboratory March 18. 2013 Collaborators and acknowledgements • Andreas Ekström (UiO, MSU) • Christian Forrsen (Chalmers) • Gaute Hagen (ORNL) • Morten Hjorth-Jensen (UiO, MSU) • Gustav R. Jansen (UTK, ORNL) • Ruprecht Machleidt (UI) • Hai Ah Nam (ORNL) • Witold Nazarewicz (UTK, ORNL) • Thomas Papenbrock (UTK, ORNL) Outline • Motivation. • Shell evolution in oxygen isotopes. • Dripline • Magic nuclei. • 26 O vs. 26 F. • Shell evolution in calcium isotopes. • The single particle picture. • Magic numbers and shell closures. • Consistent nuclear forces Understanding matter The nuclear shell model • Maria Goeppert Mayer, Phys. Rev. 75 (1949). • Otto Haxel, J. Hans D. Jensen, and Hans E. Suess, Phys. Rev. 75 (1949). • Nobel prize in physics in 1963: Eugene Wigner, Maria Goeppert Mayer, J. Hans D. Jensen. • Defined by shell closures at magic numbers, where a spin-orbit force added to a harmonic oscillator potential reproduce the magic numbers. The nuclear manybody problem Need to solve the Schrödinger equation Ĥ|Ψi = T̂ + V̂1 + V̂2 + V̂3 . . . |Ψi = E|Ψi Two ingredients 1. The nuclear interaction. 2. A method to solve the many body problem. Nuclear interactions • Want an interaction between nucleons, with the pion as force carrier. • Not the fundamental degrees of freedom. • Hadrons are color neutral, in much the same way as atoms are charge neutral. • The interaction between hadrons are residual interactions, much like the van der Waals interactions between molecules. Complicated interaction with manybody components Chiral effective field theory D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003) • Direct link to QCD. • Perturbative expansion in momentum. • Chiral symmetry is spontaneously and explicitly broken. • The hierarchy of nuclear forces unfolds automatically. Density dependent chiral threebody force Finite basis expansion • The wavefunction is expanded in Slater determinants |Ψi = D X ci |Φi i. i • The number of possible n Slater determinants is A , where n is the number of single particle states and A is the number of nucleons. Curse of dimensionality 4 1052 10 Slater determinant basis Be 16 O 40 Ca 48 1044 10 He 10 40 1036 1032 1028 1024 1020 1016 1012 108 104 100 0 50 100 Number of single particle states 150 200 The coupled-cluster method Excited states using EOM-CC Eigenvalues of H̄ = e −T̂ Ĥe T̂ − hΦ0 |Ĥ|Φ0 i H̄R̂ c = ω R̂ Properties of H̄. • Non-symmetric (non-hermetian) operator. • For CCSD and a twobody hamiltonian - six-body operator. • The matrix representation is very sparse. • Generally too large to store and diagonalize exactly. Efficient implementation of H̄R̂ is key. C Open Quantum Systems The oxygen dripline Oxygen isotopes from chiral interaction Evolution of single particle energies S. M. Lenzi, F. Nowacki, A. Poves and K. Sieja, PRC 82 054301 (2010) Main features • Shell-model calculation in the sd-shell including 0f7/2 and 1p3/2 for neutrons. • Inversion of the 0f7/2 and the 1p3/2 single particle states in 28 O. Negative parity states in O25 Partial summary • 28 O is not a closed shell nucleus. • Contiuum effects crucial for level ordering. • New shell consisting of 0d3/2 , 1p3/2 and 1p1/2 ? • Next doubly magic oxygen nuclei would be 34 O? • Coupled cluster calculation in this region will be very difficult, since we have no good closed shell reference. The effects of a single proton • Adding a proton changes the dripline by 6 neutrons. • Not all fluorine isotopes towards the dripline are bound • Interplay between proton-neutron interactions, neutron-neutron interactions, threebody interactions and continuum degrees of freedom. 26 F – probing the proton-neutron interaction • Simple structure – 24 O plus πd5/2 and νd3/2 . • First approximation – J π = 1+ − 4+ . • Weakly bound – Sn ≈ 0.8 MeV. Threebody forces in 26 F A. Lepailleur et al., Phys. Rev. Lett. 110, 082502 (2013) Technical details • Chiral interaction at N3 LO. • Identical threebody force as established in the oxygen chain. • 17 major harmonic oscillator shells with a Gamow-Hartree-Fock basis for νs1/2 and νd3/2 • CCSD with triples corrections (Λ-CCSD(T)) for 24 O, with 2PA-EOMCC. • 26 Ffree = B(25 O) + B(25 F) − B(24 O) Threebody forces are crucial for correct levelspacing. Resonances in neutron-rich 24 O Oxygen isotopes from chiral interaction Evolution of single particle energies Technical details • J. Meng, H. Toki, J. Y. Zeng, S. Q. Zhang and S. -G. Zhou, PRC 65 041302(R) (2002). • Relativistic mean-field including continuum effects. Main features • Bunching of single-particle energies outside the pf -shell. • No shell-gap in 60 Ca 70 Ca. • Large deformations and no shell-closure. • Continuum effects responsible for bound 60 Ca - 72 Ca. Evolution of single particle energies S. M. Lenzi, F. Nowacki, A. Poves and K. Sieja, PRC 82 054301 (2010) Main features • Shell-model calculation in the pf -shell including 0g9/2 and 2d5/2 for neutrons. • Inversion of the 0g9/2 and the 2d5/2 single particle states in 60 Ca. • Bunching of levels including the 0f5/2 state indicates no shell-closure. Binding energies in calcium isotopes G. Hagen, M. Hjorth-Jensen, GRJ, R. Machleidt, and T. Papenbrock, PRL109 032502 (2012) Technical details -320 • Chiral interaction at N3 LO. -340 -360 NN + 3NFeff Experiment -380 E (MeV) • Density dependent three body force with kF = 0.95fm−1 , cD = −0.2 and cE = 0.735. Nmax = 18 and ~ω = 26 MeV. -400 • Mass of 51 Ca and 52 Ca from A. T. Gallant et al., PRL 109, 032506 (2012) -420 -440 -460 Main features -480 • Total binding energies agree well with experimental masses. -500 -520 39 40 41 42 47 48 49 50 51 52 53 54 55 56 A 59 60 61 62 • 60 Ca is not magic. • Three nucleon force is repulsive. Binding energies in calcium isotopes G. Hagen, M. Hjorth-Jensen, GRJ, R. Machleidt, and T. Papenbrock, PRL109 032502 (2012) Technical details -320 • Chiral interaction at N3 LO. -340 -360 NN + 3NFeff Experiment NN only -380 E (MeV) • Density dependent three body force with kF = 0.95fm−1 , cD = −0.2 and cE = 0.735. Nmax = 18 and ~ω = 26 MeV. -400 • Mass of 51 Ca and 52 Ca from A. T. Gallant et al., PRL 109, 032506 (2012) -420 -440 -460 -480 Main features NN only • Total binding energies agree well with experimental masses. -500 -520 39 40 41 42 47 48 49 50 51 52 53 54 55 56 A 59 60 61 62 • 60 Ca is not magic. • Three nucleon force is repulsive. Shell evolution in neutron rich calcium isotopes. Details • J. D. Holt, T. Otsuka, A. Schwenk and T. Suzuki, J Phys G39 085111 (2012).. • J π = 2+ systematics in even calcium isotopes. Main features • Threebody forces needed to make 48 Ca magic. • Different models have 54 Ca magic, semi magic and not magic at all. J π = 2+ systematics in even calcium isotopes G. Hagen, M. Hjorth-Jensen, GRJ, R. Machleidt, and T. Papenbrock, PRL109 032502 (2012) 5 NN+3NFeff Exp E2+ (MeV) 4 Technical details • Chiral interaction at N3 LO. 3 • Density dependent three body force with kF = 0.95fm−1 , cD = −0.2 and cE = 0.735. Nmax = 18 and ~ω = 26 MeV. 2 1 0 42 48 50 A Ca 52 54 56 Main features • Good agreement between theory and experiment. • Shell closure in 48 Ca. • Sub-shell closure in 52 Ca. • Predict weak sub-shell closure in 54 Ca. J π = 2+ systematics in even calcium isotopes G. Hagen, M. Hjorth-Jensen, GRJ, R. Machleidt, and T. Papenbrock, PRL109 032502 (2012) 5 NN+3NFeff Exp NN only E2+ (MeV) 4 Technical details • Chiral interaction at N3 LO. 3 • Density dependent three body force with kF = 0.95fm−1 , cD = −0.2 and cE = 0.735. Nmax = 18 and ~ω = 26 MeV. 2 1 0 NN only 42 48 50 A Ca 52 54 56 Main features • Good agreement between theory and experiment. • Shell closure in 48 Ca. • Sub-shell closure in 52 Ca. • Predict weak sub-shell closure in 54 Ca. Spectra in calcium isotopes G. Hagen, M. Hjorth-Jensen, GRJ, R. Machleidt, and T. Papenbrock, PRL109 032502 (2012) 4 7 4 + Technical details + 9/2 + 3 6 Energy (MeV) + 52 Ca + 4 5 5/2 54 + - 4 3 1 2 2 55 + 7/2 1+ 2+ 3+ 4 + 1+ 2+ 3+ 4 Ca 53 • Chiral interaction at N3 LO. Ca + 5/2 56 Ca • Density dependent three body force with kF = 0.95fm−1 , cD = −0.2 and cE = 0.735. Nmax = 18 and ~ω = 26 MeV. Ca + 2 + + - 3/2 + 3 + 2 - 5/2 • Continuum included for selected weakly bound and resonant states. + 4 + 2 1 0 0 + 0 - + - 1/2 1/2 0 + 0 + - - 5/2 5/2 0 + 0 + Exp NN+3NFeff Exp NN+3NFeff Exp NN+3NFeff Exp NN+3NFeff Exp NN+3NFeff Main features • Inversion of g9/2 and d5/2 . • 1/2+ groundstate in 61 Ca. • Continuum effects are crucial. Consistent nuclear forces • Want to derive consistent forces. • All contributions at a given order are evaluated. • Currently NNLO. • Apply numerical optimization algorithms to find the optimal parameters. NNLO (POUNDerS) POUNDerS • Practical Optimization Using No Derivatives for sums of Squares • Part of TAO (http://www.mcs.anl.gov/research/projects/tao/) Finding a better solution • POUNDerS is allowed to explore the NNLO parameter space to find the best fit to phaseshifts. • Compute χ2 /datum against available scattering data, to evaluate the quality of the interaction. Quality of the fit Preliminary Tlab (MeV) 0–35 35–125 pp χ2 /datum 1.11 1.56 np χ2 /datum 0.85 1.17 125–183 23.95 4.35a 1.87 183–290 aC pp N3 LO -7.8188 NNLO-POUNDerS -7.8174 C rpp 2.795 2.755 aN pp N rpp aN nn N rnn anp rnp -17.083 2.876 -17.825 2.817 -18.900 2.838 -23.732 2.725 2.224575 1.975 0.275 4.51 -18.889 2.797 -23.749 2.684 2.224582 1.967 0.272 4.05 BD (MeV) rD (fm) QD (fm2 ) PD 29.26 6.09 0–290 17.10 14.03 a 2.95 Empirical -7.8196(26) -7.8149(29) 2.790(14) 2.769(14) -18.95(40) 2.75(11) -23.740(20) 2.77(5) 2.224575(9) 1.97535(85) 0.2859(3) Triton binding energy Preliminary -6 POUNDerS-NNLO (NN+NNN) POUNDerS-NNLO (NN) Experiment N3LO (NN) ENCSM (MeV) -6.5 -7 -7.5 -8 -8.5 -9 0 10 20 Nmax 30 40 4 He binding energy Preliminary -20 -22 ENCSM (MeV) -24 -26 -28 -30 POUNDerS-NNLO(NN) POUNDerS-NNLO(NN+NNN) N3LO(NN) Experiment -32 -34 0 5 10 Nmax 15 20 Oxygen isotopes with NNLO (POUNDerS) Preliminary −100 0 -10 E (MeV) −120 −130 −140 E (MeV) −110 -20 -30 -40 -50 -60 -70 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 A −150 −160 −170 Experiment NNLO (POUNDerS) 3 N LO 15 16 17 18 19 20 21 22 23 24 25 26 27 28 A Oxygen spectra with NNLO (POUNDerS) Preliminary + 18 7 Energy (MeV) + 2+ 3 8 O 4 0 3 + + 22 3+ 0+ 2 + + 3 + 2 + 0+ + 4 2+ 3+ 4 2 + 4 3 4 2 2 2 1 0 + 0 0 + 1 + + + 3/2 1 + + 2 5/2 + + + + 5/2 3/2 + 24 + + + + + + 3 ? + 2 3/2 + 2 2 0 + + + 4 1 2 + 2 2 3 + + O O 3 4 23 + 4 + 2 6 5 2 + 3 O + 0 + 5/2 + 0 + 0 + + 1/2 + + 1/2 0 1/2 + 0 + 0 + Exp 3 NNLO N LO Exp 3 NNLO N LO Exp NNLO 3 N LO Exp NNLO 3 N LO J π = 2+ systematics in oxygen isotopes with NNLO (POUNDerS) Preliminary 5 3 N LO 3nfeff Exp 3 N LO NNLO (POUNDerS) E2+ (MeV) 4 3 2 1 0 18 22 A O 24 26 J π = 2+ systematics with NNLO (POUNDerS) Preliminary 5 NN+3NFeff Exp NN only NNLO (POUNDerS) E2+ (MeV) 4 3 ✹ 2 1 N2LO (POUNDerS) 0 42 48 50 A Ca 52 54 56 Calcium isotopes with NNLO (POUNDerS) Preliminary -320 -340 -360 NN + 3NFeff Experiment NN only E (MeV) -380 -400 -420 -440 -460 -480 NN only -500 -520 39 40 41 42 47 48 49 50 51 52 53 54 55 56 A 59 60 61 62 Calcium isotopes with NNLO (POUNDerS) Preliminary -320 -340 -360 NNLO (POUNDerS) NN + 3NFeff Experiment N3LO NN only E (MeV) -380 -400 -420 -440 -460 -480 NNLO (POUNDerS) -500 -520 39 40 41 42 47 48 49 50 51 52 53 54 55 56 A 59 60 61 62 Calcium isotopes with NNLO (POUNDerS) Preliminary -320 -340 -360 NNLO (Shifted) NN + 3NFeff Experiment N3LO NN only E (MeV) -380 -400 -420 -440 -460 -480 -500 -520 39 40 41 42 47 48 49 50 51 52 53 54 55 56 A 59 60 61 62 Calcium isotopes with NNLO (POUNDerS) Preliminary -320 -340 -360 NNLO (Shifted) NN + 3NFeff Experiment N3LO NN only E (MeV) -380 -400 -420 -440 -460 -480 -500 -520 39 40 41 42 47 48 49 50 51 52 53 54 55 56 A 59 60 61 62 Questions? Gustav R. Jansen [email protected] This work was partly supported by the Office of Nuclear Physics, U.S. Department of Energy (Oak Ridge National Laboratory), under Contracts No. DE-FG02-96ER40963 (University of Tennessee) and No.DE-SC0008499 (NUCLEI SciDAC-3 Collaboration). An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Oak Ridge Leadership Computing Facility located in the Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-00OR22725 and used computational resources of the National Center for Computational Sciences, the National Institute for Computational Sciences, and the Notur project in Norway.
© Copyright 2026 Paperzz