Southern Hemispheric mean spectra Eddy kinetic energy Precipitation ERA-Interim ~20-25 days Normalized Power AMSR-E 0 0.05 0.1 0.15 Cycles/day 0.2 0.25 0 0.05 0.1 0.15 Cycles/day 0.2 0.25 Thompson/Woodworth 2014; Thompson/Barnes 2014 Exploring periodicity in the extratropical circulation on synoptic scales … David W J Thompson Dept of Atmospheric Science, CSU Spectrum of EKE at 300 hPa averaged 40-60S power a) zonal-mean 0 0.1 0.2 0.3 0.4 cpd wer b) 180 deg longitude windows 0.5 Projection onto of regional Spectrum EKE atscales 300 hPa averaged 40-60S 0 0.1 0.2 0.3 0.4 0.5 cpd power b) 180 deg longitude windows 0 0.1 0.2 0.3 cpd wer c) 90 deg windows 0.4 0.5 Projection onto of regional Spectrum EKE atscales 300 hPa averaged 40-60S 0 0.1 0.2 0.3 0.4 0.5 0.4 0.5 cpd power c) 90 deg windows 0 0.1 0.2 0.3 cpd er d) 30 deg windows Projection onto of regional Spectrum EKE atscales 300 hPa averaged 40-60S 0 0.1 0.2 0.3 0.4 0.5 0.4 0.5 cpd power d) 30 deg windows 0 0.1 0.2 0.3 cpd periodicity is largely absent on scales less than <180 degrees Longitude/time lag regression plots 1. Average EKE at 300 hPa over latitudes 40-60S. 2. Form the longitude/time lag regression map for EKE40-60 at a base longitude of 0E. 3. Repeat 2), but for EKE40-60 at all base longitudes. 4. Average 3) over all base longitudes to generate a mean lag regression plot. Lag regression plot of EKE. Starting at lag 0. EKE regressed on itself at lag 0 −10 Lag in time Lag (days) −5 0 5 10 180 −90 0 90 180 Longitude Lag in longitude −90 0 −10 Lag (days) −5 0 5 wave packet propagates to the east at ~25 m/s 10 180 −90 0 90 180 Longitude −90 0 −10 Lag (days) −5 0 5 10 180 −90 0 90 180 Longitude −90 0 −10 Lag (days) −5 0 5 10 180 −90 0 90 180 Longitude −90 0 note the development of EKE anomalies in wake of wave packet −10 Lag (days) −5 0 5 10 180 −90 0 90 180 Longitude −90 0 −10 Lag (days) −5 0 5 10 180 −90 0 90 180 Longitude −90 0 Negative EKE anomalies emerge at lags ~5-10 days. zooming in on positive lags −10 0 Lag (days) −5 0 5 5 10 −90 0 90 180 Longitude −90 10 0 Lag (days) 180 15 20 25 30 0 90 180 −90 0 Longitude Positive EKE anomalies emerge at lags ~25 days. 90 180 How does the periodicity appear along the path of individual wave packets? −10 Lag (days) −5 0 5 10 180 −90 0 90 180 Longitude −90 0 weak periodicity along path of wave packet Does the periodicity in storm amplitudes project onto regional weather? −10 Lag (days) −5 0 5 10 180 −90 0 90 180 Longitude weak periodicity at fixed location −90 0 −10 Lag (days) −5 0 5 10 180 −90 0 90 180 Longitude −90 0 varying periodicity depending on the flow rate sampled along the latitude circle periodicity in a “hierarchy” of models… Normalized Power Spectra of SH-mean EKE observations (solid) and GFDL CM3 (dashed) 0 0.05 0.1 0.15 Cycles/day 0.2 0.25 Thompson/Barnes 2014 Normalized Power Spectra of SH-mean EKE observations (solid) GFDL dry dynamical core in HS framework (dashed) 0 0.05 0.1 0.15 Cycles/day 0.2 0.25 Thompson et al. 2017 −10 −10 −5 −5 Lag (days) Lag (days) Spectra of SH-mean EKE observations (solid) 0 0 5 5 10 10 180 −90 0 90 180 Longitude −90 Observations 0 −180 −90 0 +90 +180 Relative longitude −180 Dry dynamical core −90 Simple(st?) model of the periodicity Upper layer EKE anomalies are driven by heat fluxes in lower layer Lower layer Two way interactions between heat fluxes and baroclinicity Lower layer H denotes heat fluxes; B denotes baroclinicity. ∂ ∂ B B + U lower B = α BH − ∂t ∂x τB Anomalously poleward heat fluxes => decreases in baroclinicity ∂ ∂ H H + U lower H = αH B − ∂t ∂x τH Anomalously high baroclinicity => poleward heat fluxes Upper layer H denotes heat fluxes; E denotes EKE. ∂ ∂ E E + U upper E = αEH − ∂t ∂x τE Anomalously poleward heat fluxes => increases in EKE We will consider 3 cases: U lower = U upper = 0 U lower = U upper = 25 m/s U lower = 10 m/s; U upper = 25 m/s power Power spectrum of zonal mean EKE 0 0.1 0.2 0.3 cpd 0.4 0.5 Lag (days) U lower = U upper = 0 −1 −3 −5 −7 −9 −11 −13 90 180 −90 0 Longitude 90 180 −90 EKE anomalies decay and grow at fixed location. Lag (days) U lower = U upper = 25 m/s −1 −3 −5 −7 −9 −11 −13 90 180 −90 0 Longitude 90 180 −90 anomalies decay and grow following wave packet U lower = 10 m/s Lag (days) U upper = 25 m/s −1 −3 −5 −7 −9 −11 −13 90 180 −90 0 Longitude 90 180 −90 EKE anomalies develop in wake of existing packets Take home messages Analyses of increasingly simple models suggest that: 1. The periodicity in SH wave activity derives from (dry) feedbacks between the heat fluxes and baroclinicity in the lower troposphere. 2. The structure of the periodicity on synoptic scales derives from the contrasting eastward speeds of the source of the periodicity in the lower troposphere (~10 m/s) and wave packets in the upper troposphere (~25 m/s). How does the periodicity appear in the context of individual wave packets? Power spectra of EKE following the flow 25 Rate (m/s) 20 15 10 5 0 0 0.1 0.2 0.3 cpd 25 days 0.4 0.5 eddy kinetic energy at 300 hPa spectrum ofoffield 30-70S Power spectra fieldsaveraged averaged 30-70 deg. S Spatial signatures the BAM spatial signature ofofBAM a) EKE 300 b) EKE 300 100 80 60 0 −20 m2/s2 20 Normalized Power 40 −40 −60 −80 0 −100 0.05 0.1 0.15 Cycles/day 0.2 0.25 Thompson/Woodworth 2014
© Copyright 2026 Paperzz