1. The curve C has equation y = (2x-3) 5 · The point P lies on C and has coordinates (w, - 32). Find (a) the value ofw, (2) (b) the equation of the tangent to Cat the point P in the form y = mx + c, where m and c are constants. (5) w z;..' . .J... 2:: ..•• - ~~;:.,.,.. boA-.... .. . .. \ =s (-2)A( X 2. = \bD b lan~ g(x) = e x -l + x-6 2. (a) Show that the equation g(x) = 0 can be written as X = ln(6 - X) + 1, X <6 (2) The root of g(x) = 0 is a. The iterative formula XII+ I = ln( 6 - X II ) + 1' Xo =2 is used to find an approximate value for a. (b) Calculate the values of x1 , x 2 and x3 to 4 decimal places. (3) (c) By choosing a suitable interval, show that a= 2.307 correct to 3 decimal places. (3) _ _;_) _ X-\ ~ \~(b--x.- _~ "'LX:: \~-x.):±\ ~ __ L \(\ _b) (A ~~~0 b- JC.. __LO._:..~ ) X-_5_b _] _ _ 'X.e> ~ 2. ----~)-f.(_2_:_3-QbS ~ - O·DOC>18 _____:t_, "; L_2:>_B_6~_ - - ~f1-(2-=-301-j)_~Q·Q_CQ.41 2~ = ~·i,<6~'-----------___'X.~-:; 1· 3 \1.5 ___~--"-' -·. b~_SJ ')~k,...~e__ · -----~\l-L.e_, oc'\- h~ ---',-Ax..~~ 1·30-bSS~b-.. 'l· 30~ a-'cJ-'2 ·303:$ --------=----. ---- -- : -.. cJ.. ~b~OT-{-~p') --------------------- --~~~~~- 3. y y = f(x) 0 X Figure 1 Figure 1 shows part of the curve with equation y = f(x), x E IRL The curve passes through the points Q(O, 2) and P(-3, 0) as shown. (a) Find the value of ff(-3) . (2) On separate diagrams, sketch the curve with equation (2) (c) y=f(lxl) - 2, (2) (d) y = 2f (~ X). (3) Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes. - _ c.\)_£_f._(-3) = fJ_o_,J- __,.,2.,____ _ _ _ _ __ c) f{\~\)- 2- d.) 4. (a) Express 6 cos()+ 8 sin() in the form R cos(() - a.), where R > 0 and 0 < a. < ~. Give the value of a. to 3 decimal places. (4) (b) p 4 (()) = 12 + 6 cos() + 8 sin() ' Calculate (i) the maximum value of p(()), (ii) the value of() at which the maximum occurs. (4) =-(_C~(9-~D (__CJ& Coso<. +~S~QS-s, d... ~b~ :LiS~ -- RS ~~~ ~-s7~ArJ....:--i b) ~-COs~ ~.b __ _ R --:--~ ~-\:£~ ~ {2._-= l0 e-(&) ~ 4- 0~-- 9 t:A :; _ __ __ I D Cos e -0 ·~2~-) -~~e~) =--4 - ~---'2.+ (JOLai&-0·~)) _ ----- _.,,) ' -- - \2.-{\0) :.~ ~ 2. - '2.. ~-- ~~--~~~---·:-~~~n --= -~l---~--,tr~---'(r---0 ·')~..~~ - r----- - - :. e '; +·o:r (i) Differentiate with respect to x 5. (b) y=(x+sin2xl (6) = cot y, Given that x (ii) show that dxdy ~ _b) l+ x ----- --- ~ =- JC~ \[:;. --r -- =~ (5) \C\ 'L:x__ -:)~ = 2~~ :-v-z.\1\l.'X.+ ~'!. ~~-- f -4----~~ u =~ "=-- - cAV)- =3 ~-+S~l::"l-)'2- x- ( \ +~as2:x..:}_____ -- --- --- -- ~~ '\\} _ :x_ ::: -~ - _C()l:_~ -=---~ -------------~0~ ~--- - 6. (i) Without using a calculator, find the exact value of (sin 22.5° + cos 22.5°) 2 You must show each stage of your working. (5) (ii) (a) Show that cos 28 + sin 8 = 1 may be written in the form k sin2 8- sin 8 = 0, stating the value of k. (2) (b) Hence solve, for 0 :::;; 8 < 360°, the equation cos 28 + sin 8 = 1 (4) __·,) - s ' n::_u._.s _±___2___S_, o.ll___:S_Cos 2.2~ s = Stn'2.1.2·S +(~22·S) + Sn'V~~s ::: \ + + ( o5 '2. 2 '2."---"'·.S..,____ \ri_ Collft:-T_S,cij_?_\_ _ _ _ _ _ _ __ \\) ~) /_ ~StY\&.;? c..) 2s,"?fr- s,~a =O_ I - - - -- - - -- -- - - - - - - - - - - - - - - - - - X- 15,¥"1 - ::-:- t(:: ~ _6_~$ td:l -l~G- _- _,_0"'------- - -- - ____,S,"'G = o =) 9; 0 1 \KQ_ _ _ _ __ ---"''-" # -- - . _ ~,oe~ i ~flo; y),,so h(x)=-2- + _ 4__ 18 x+2 x 2 +5 (x 2 +5)(x+2)' 7. x~O (a) Show that h(x) =--f.£x +5 (4) (b) Hence, or otherwise, find h'(x) in its simplest form. (3) y y = h(x) 0 X Figure 2 Figure 2 shows a graph of the curve with equation y = h(x). (c) Calculate the range of h(x) . (5) ------- =-) _b) lA..~'2..-x...__ y ~ ~-z-t:-_S_ \A I :; k \{ f ::. £..X... _b~(~ ~ '21...'2+\0-~x.,"2. (:L'2.+-J )..,_ -b-~ ~ -L-y:X:. '---'2-.+r-\\--1Q H-- - - - ------------'-. cxz-+-s'r ________________ 3f ~~ ~~l~--~o ----- j:. ~JS - =5-t5 - s 8. The value of Bob's car can be calculated from the formula V = 17000e-0.251 + 2000e-O.st + 500 where Vis the value of the car in pounds ( £) and t is the age in years. (a) Find the value of the car when t = 0 (1) (b) Calculate the exact value oft when V = 9500 (4) (c) Find the rate at which the value of the car is decreasing at the instant when t = 8. Give your answer in pounds per year to the nearest pound. · (4) l=t<X)O<i* 0 ·'2Sf""±2£X:De: 0 ·St ±SOD ::-9SC5D b) ~ '20Db@:-o·Br)z +\~o&Sf") -L)O{)Q :;Q :. 2tx:nx?- + \-=tOCDL -C) crt) =0 x:e-o·2Sl= ~ 27-'2. +\3-'X..-9 :: 0
© Copyright 2025 Paperzz