1 QUADRATIC SURFACES Sphere S = (m, n, p) = (0, 0, 0) Ellipsoid (x − (y − n)2 (z − p)2 + + =1 a2 b2 c2 S = (m, n, p) = (0, 0, 0) r=3 a = 3, b = 2, c = 1 Sphere Ellipsoid (upper part) p z = p + c r2 − (x − m)2 − (y − n)2 S = (m, n, p) = (0, 0, 0) (lower part) r (x − m)2 (y − n)2 z =p−c 1− − a2 b2 S = (m, n, p) = (0, 0, 0) r=3 a = 3, b = 2, c = 1 (x − m)2 + (y − n)2 + (z − p)2 = r2 m)2 c 2014 doc. Ing. Ivana Linkeová, Ph.D. 2 QUADRATIC SURFACES Hyperboloid of revolution of one sheet, o k z (x − m)2 (y − n)2 (z − p)2 + − =1 a2 b2 c2 S = (m, n, p) = (0, 0, 0) Elliptic hyperboloid of one sheet, o k z (x − m)2 (y − n)2 (z − p)2 + − =1 a2 b2 c2 S = (m, n, p) = (0, 0, 0) a = b = 2, c = 3 a = 1, b = 2, c = 3 Cone of revolution, o k z (x − m)2 (y − n)2 (z − p)2 + − =0 a2 b2 c2 V = (m, n, p) = (0, 0, 0) Eliptic cone, o k z (x − (y − n)2 (z − p)2 + − =0 a2 b2 c2 V = (m, n, p) = (0, 0, 0) a = b = 2, c = 3 a = 1, b = 2, c = 3 m)2 c 2014 doc. Ing. Ivana Linkeová, Ph.D. 3 QUADRATIC SURFACES Hyperboloid of revolution of two sheets, o k z (x − m)2 (y − n)2 (z − p)2 − − + =1 a2 b2 c2 S = (m, n, p) = (0, 0, 0) Elliptic hyperboloid of two sheets, o k z (x − m)2 (y − n)2 (z − p)2 − − + =1 a2 b2 c2 S = (m, n, p) = (0, 0, 0) a = b = 3, c = 4 a = 2, b = 3, c = 4 Paraboloid of revolution, o k +z (x − m)2 (y − n)2 z−p + = 2 2 a b c V = (m, n, p) = (0, 0, 0) Elliptic paraboloid, o k +z (x − m)2 (y − n)2 z−p + = 2 2 a b c V = (m, n, p) = (0, 0, 0) a = b = 2, c = 5 a = 2, b = 3, c = 5 c 2014 doc. Ing. Ivana Linkeová, Ph.D. 4 QUADRATIC SURFACES Hyperbolic paraboloid, o k +z (x − m)2 (y − n)2 z−p − = 2 2 a b c V = (m, n, p) = (0, 0, 0) Elliptic cylinder, o k z (x − m)2 (y − n)2 + =1 a2 b2 S = (m, n, z) = (0, 0, z) a = 3, b = 2, c = 1 a = 2, b = 3 Parabolic cylinder, o k z (x − m)2 = 2p(z − p) a2 V = (m, n, p) = (0, 0, 0) Hyperbolic cylinder, o k z (x − m)2 (y − n)2 − =1 a2 b2 S = (m, n, p) = (0, 0, 0) p= 1 2 a = 2, b = 3 c 2014 doc. Ing. Ivana Linkeová, Ph.D.
© Copyright 2026 Paperzz