3m106 - sks23cu.net

Approximation using Differentials - Classwork
01231!415)*14!
dy
!y
!(%!61!! "#$
7!!8*!(9)+!+1:()%*;!<1!=)31!+1>?@?(1!A1?*)*=+!(%! !x ;! !y ;!dx;!dy
dx
!!!x "% !x
&'!x!()*+,-'!*".+,!/)-!(012-!y 3 f ! x"4 !
!y
y!()*+,-'!*'!5-""6!!7-!(*""!!x!*+8!dx!
/)-!()*+,-!#+!x6!!!!!!!!x 3 dx6
!y!#'!/)-!*(/0*"!()*+,-!#+!9!,#2-+!!x!
:/)-!'-(*+/!"#+-;6!!!!!!y # f ! x $ !x" # f ! x"
f ! x"
dy!#'!/)-!*<<1.=#$*/-!()*+,-!#+!y
:/)-!/*+,-+/!"#+-;6!!&'!!x 3 dx!,-/'!2-19!'$*""4
!x # dx
!y!*+8!dy!*1-!2-19!(".'-!#+!2*"0-6!7-!*1-!0'0*""9
!#+/-1-'/-8!#+!!y 4 !/)-!*(/0*"!()*+,-!#+!y6!>0/
5#/).0/!/-()+.".,94!!y!(*+!?-!8#@@#(0"/!/.!(*"(0"*/-6
x
dy
!dy!#'!-*'#-16! # f $! x"6!!A.!#/!@."".5'!/)*/
dx
!dy # f $! x" % dx6!B)#'!#'!(*""-8!/)-!8#@@-1-+/#*"[email protected]$6
!!
BC?A>&1!-D! y # f ! x" # Cx E # D x $ E !!!!!!!E)*4! !y !?*4!dy!<91*!x!F!-!?*4! !x !F!dx!F!7.dy
!y # f ! x $ !x" # f ! x"
dy # f $! x" % dx
E
!y # C! x $ !x " # D! x $ !x " $ E # C x E $ D x # E
E
!y # C!F6%F" # D!F6%F" $ E # C $ D # E
f $! x " # I x # D
dy # #E!6%F" # 6 # %E
!!
#
#
6
%FGH
y
!
!!
BC?A>&1!GD!H%A>?@1!! !y !?*4!dy!?+!x!:9?*=1+!5@%A!G!(%!G7.-!=)31*! f ! x" # x C # x E $ Cx # E
!!
!y # f ! x $ !x" # f ! x"
dy # f $! x" % dx
C
E
!y # !E6%F" # !E6%F" $ C!E6%F" # E # D
!!!y # 6FF%J
f $! x " # C x E # E x $ C
dy # FF!6%F" # 6FF
BC?A>&1!IJ!E)*4!(91!?>>@%C)A?(1!1@@%@!)*!:?&:'&?()*=!(91!3%&'A1!%5!?!+>91@1!)5!(91!@?4)'+!)+!A1?+'@14!(%!61!K
dv
!!!!!!!!!!!!!!!!!!!!)*:91+!<)(9!?!A1?+'@1A1*(!1@@%@!%5!L.7-!)*:91+7!E)*4!(91!@1&?()31!>1@:1*(?=1!1@@%@! !?+!<1&&7
V
K
V # &r C
C
!!!!!!!!!!!!!!!!!!!!! dV # K&r E dt dr
dV # K&!EJ"!%6F" # F%& # CF6KFI !#+ C
!!
C
dv F%&
#
#
# IL
V J%%& J%
C
!!
www.MasterMathMentor.com !!!!!"#! $%&'()%*+! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!-./!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Stu Schwartz
Approximation using Differentials - Homework
&'(!)*++(,(-.*/0'!.1!21345.(! !y /-)!dy!6*7(-! f ! x" 8!x8!!/-)! !x !9!dx!:
(
!!!!!!!!;:! f ! x" # $ x ' " % x $ " & x $ " !!!!!!!!
!!!!<:!!! f ! x" # $
!!
x
!
!!!!!!x!9!;!/-)! !x !9!dx!9!:$# !!!!!!!!!!!!!!!!!!!!!!!x!9!#!/-)! !x !9!dx!9!:$#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!x!9!;!/-)! !x !9!dx!9!:$#
#:! !!y # "x $ " # x " "
=:!>?(!'*)(!1+!/!'@5/,(!*'!3(/'5,()!.1!A(!#$!+((.!B*.?!/!41''*A0(!(,,1,!1+!C!$:#!+.:!!D?/.!*'!.?(
!!!!)*++(,(-2(!A(.B((-!.?(!.,5(!6,(/.('.!41''*A0(!(,,1,!*-!21345.*-6!.?(!/,(/!1+!.?(!'@5/,(!/-)!*.'!/44,1E*3/.*1!!!!5'*-6!)*++(,(-.*/0':!!F*-)!.?(!,(0/.*7(!4(,2(-./6(!(,,1,!A(.B((-!.?(!/44,1E*3/.(!(,,1,!/-)!.,5(!/,(/:
G:!!H-!I!*-2?!./00!2J0*-),*2/0!21++((!2/-!?/'!/!K!*-2?!)*/3(.(,!B*.?!/!41''*A0(!(,,1,!1+!::$;!-2?:!!D?/.!*'!.?(
!!!!)*++(,(-2(!A(.B((-!.?(!.,5(!6,(/.('.!41''*A0(!(,,1,!*-!21345.*-6!.?(!71053(!1+!.?(!2/-!/-)!*.'!/44,1E*3/.*1!!!!5'*-6!)*++(,(-.*/0':!!F*-)!.?(!,(0/.*7(!4(,2(-./6(!(,,1,!A(.B((-!.?(!/44,1E*3/.(!(,,1,!/-)!.,5(!71053(:
K:!L-!,1/)'!*-!?*00J!/,(/'8!J15!'13(.*3('!'((!'*6-'!0*M(!.?*'N
23,,4!5*66
!$17!89:;,
)*+,!-!.
#
)/0!-!(11
!!!!>?(!6,/)(!1+!/!?*00!*'!.?(!'014(!O,*'(P,5-Q!B,*..(-!/'!/!4(,2(-./6(8!1,8!(@5*7/0(-.0J8!.?(!-53A(,!1+!+((.!.?(!?*00
!!!!,*'('!4(,!?5-),()!+((.!?1,*R1-./00J:!>?(!+*65,(!/A17(!'?1B'!.?(!0/..(,!3(/-*-6!1+!6,/)(:
!!!!!!!!!!!!/Q!S(.!x!A(!.?(!6,/)(!1+!/!?*00:!TE40/*-!B?J!.?(!/-60(8! # !)(6,(('8!.?/.!/!?*00!3/M('!B*.?!.?(!?1,*R1-./0!*'
(<1 "( x
3:0
!!!!!!!!!!!!!!!!6*7(-!AJ! # #
$
(11
!!
%(<1 (
(11
* $
AQ!!H-!(@5/.*1-!+1,! d# !*'! d# # '
dx !U15!2/-!('.*3/.(! # !/.!x!9!;$V!'*340J!AJ!350.*40J*-6
$
)
&
$
(1111
x
!
!!!!!!!!!!!!!!!! d# !/.!x!9!$!AJ!;$:!W1B!352?!(,,1,!*'!.?(,(!*-!!.?(!7/05(!1+!q!!+15-)!AJ!.?*'!B/J!,/.?(,!.?/-!5'*-6!.?(
!!!!!!!!!!!!!!!!!(E/2.!+1,350/!B?*2?!*-7107('!.?(!!!3:0 "( !+5-2.*1-X
2Q!!H!,50(!1+!.?53A!J15!2/-!5'(!.1!('.*3/.(!.?(!-53A(,!1+!)(6,(('!/!?*00!3/M('!B*.?!.?(!?1,*R1-./0!*'!.1
!!!!!!)*7*)(!.?(!6,/)(!AJ!;:!D?(-!J15!5'(!.?*'!3(.?1)!.1!)(.(,3*-(!.?(!.?(!-53A(,!1+!)(6,(('!+1,!/!;$!V
!!!!!!!!!!!!!!!!!!!6,/)('!!?1B!352?!(,,1,!*'!.?(,(!*-!.?(!-53A(,X
MasterMathMentor.com !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!#$%!"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Stu Schwartz
Derivatives of sin(θ) and cos(θ) Using Differentials - a knol by Stephen Kent Stephenson
3/19/11 9:57 AM
There are no pending text suggestions from your readers
Derivatives of sin(!) and cos(!) Using Differentials
and Defining Angles in Radians Simplifies Trig Derivatives
Consider these figures
(where s and !s are
arc lengths):
Large !"
Small !"
As apparent in the figures, if !" # 0, then dx # !x, dy = !y, and ds # !s.
Segment BG is perpendicular to segment AB, by construction.
!BHG ~ !ACB by Angle-Angle, so we can write these proportions:
dy / ds = r cos(") / r and |dx| / ds = r sin(") / r ; or
dy = ds cos(") and dx = $ ds sin(").
Since y = r sin(") and x = r cos("),
then dy = d(r sin(")) = r d(sin(")) = ds cos("),
and dx = d(r cos(")) = r d(cos(")) = $ ds sin(").
So d(sin(")) = (ds / r) cos(") and d(cos(")) = $ (ds / r) sin(").
We know s = ("° / 360°) 2%r = (% r / 180°) "°, so ds = (% r / 180°) d("°).
Then d(sin("°)) = (% / 180°) cos("°) d("°),
and d(cos("°)) = $ (% / 180°) sin("°) d("°).
But if s / r = (% / 180°) "° is defined as " radians, then s = r " and ds = r d".
So d(sin(")) = cos(") d" and d(cos(")) = $ sin(") d";
or d(sin("))/d" = cos(") and d(cos("))/d" = $ sin(").
Hope you find this useful, -SKStephenson, [email protected],
© 2009-2011, All Rights Reserved.
Go back to A High School Math Reference (http://bit.ly/sks23cuMaths)
http://knol.google.com/k/stephen-kent-stephenson/derivatives-of-sin-θ-and-cos-θ/54i5knqm7czn/10?pli=1#view
Page 1 of 2