Math 0861 Learning Centre Graphing Linear Equations A simple way to graph linear equations is to find any two points that satisfy the equation and then draw a straight line through them. Consider these sets of similar linear equations: Example 1: y = x, y = 2x, y = 3x, y = 4x y Solution: y=x x y 0 0 1 1 y = 2x x y 0 0 1 2 y = 3x x y 0 0 1 3 y = 4x x y 0 0 1 4 y = 4x y = 3x y = 2x 5 y=x -5 5 x -5 Example 2: y = x, y = x + 1, y = x + 2, y = x + 3 Solution: y=x x y 0 0 1 1 y=x+1 x y 0 1 1 2 y=x+2 x y 0 2 1 3 y=x+3 x y 0 3 1 4 y y=x+1 y=x+2 y=x y=x+3 5 -5 5 x Note that these lines are all parallel. -5 © 2013 Vancouver Community College Learning Centre. Student review only. May not be reproduced for classes. Authoredby byEmily Gordon Wong Simpson Example 3: y = 3x − 6, y = 3x − 3, y = 3x, y = 3x + 3 Solution: y = 3x − 6 x y 0 -6 1 -3 y = 3x − 3 x y 0 -3 1 0 y = 3x x y 0 0 1 3 y = 3x + 3 x y 0 3 1 6 y y = 3x + 3 y = 3x y = 3x − 3 5 y = 3x − 6 -5 EXERCISES 5 x 5 x 5 x -5 A. Graph: y 1) y=x−3 x y 0 −3 1 −2 −1 2 5 -5 2) 3) 4) y = −x x y 0 0 1 −1 −1 2 -5 y y = 3x + 5 x y 0 1 −1 −2 y = ½x − 4 x y 0 2 4 −2 © 2013 Vancouver Community College Learning Centre. Student review only. May not be reproduced for classes. 5 -5 -5 2 y 5) y = −2x + 3 x y 0 1 2 −1 5 -5 6) y = −¼x − 1 x y 0 2 4 −4 5 x 5 x 5 x -5 y 7) 3x + y = 7 x y 0 1 −1 −2 5 -5 8) y − 2x = −2 x y 0 2 4 −2 -5 y 9) 3y = 3x − 2 x y 5 -5 10) 3y = 4 x y -5 © 2013 Vancouver Community College Learning Centre. Student review only. May not be reproduced for classes. 3 SOLUTIONS y y 2 5 3 y 5 5 5 1 -5 5 x -5 5 x -5 5 6 -5 -5 4 -5 y y 7 5 5 8 9 10 -5 5 x -5 © 2013 Vancouver Community College Learning Centre. Student review only. May not be reproduced for classes. -5 5 x -5 4 x
© Copyright 2026 Paperzz