Some integration examples Useful identities sin2 x + cos2 x = 1 tan2 x + 1 = sec2 x cos 2x = 2 cos2 x − 1 = 1 − 2 sin2 x sin 2x = 2 sin x cos x cos(a + b) + cos(a − b) = 2 cos a cos b sin(a + b) + sin(a − b) = 2 sin a cos b Z Z sin xdx = − cos x + C cos xdx = sin x + C Z Z sec2 dx = tan x + C cosh2 x − sinh2 x = 1 tan xdx = ln | sec x| + c 1 − tanh2 x = sech2 x cosh 2x = 2 cosh2 x − 1 = 2 sinh2 x + 1 Z Zsinh 2x = 2 sinh x cosh x cosh xdx = sinh x + C sinh xdx = cosh x + C Examples Z 1. Find π 4 2 sin2 2xdx. 0 We re-arrange the integrand using the formula cos 2x = 1 − 2 sin2 x. This is because we can integrate a double angle directly. π 4 Z π 4 Z 2 2 sin 2xdx = 0 (1 − cos 4x)dx 0 x− = π . 4 = Z 2. Find π 2 sin 4x 4 π 4 0 sin3 xdx. 0 We re-arrange the integrand using the formula sin2 x = 1 − cos2 x. Z π 2 sin3 xdx = Z sin x(1 − cos2 x)dx 0 Z = π 2 (sin x − sin x cos2 x)dx. 0 Now we observe that − sin x is the derivative of cos x so that the second term is a sight integral R 0 of the form f (x)f n (x)dx. Z Thus π 2 sin3 xdx = 0 π 2 Z (sin x − sin x cos2 x)dx 0 " = cos3 x − cos x + 3 1 = − −1 + 3 2 = . 3 1 #π 2 0 Z 3. Find π 3 2 tan3 xdx. 0 We re-arrange the integrand using the formula tan2 x = sec2 x − 1. π 3 Z 2 tan3 xdx = 0 π 3 Z (2 tan x)(sec2 x − 1)dx 0 π 3 Z = (2 tan x sec2 x − 2 tan x)dx. 0 Now we observe that sec2 x is the derivative of tan x so that the first term is a sight integral R 0 of the form f (x)f n (x)dx. π 3 Z 2 tan3 xdx = π 3 Z 0 (2 sec2 x tan x − 2 tan x)dx 0 = h tan2 x − 2 ln | sec x| iπ 3 0 = 3 − 2 ln 2. Z 4. Find π 3 2 sin 2x cos 3xdx. 0 We re-arrange the integrand using the formula sin(a + b) + sin(a − b) = 2 sin a cos b. Z π 3 Z 2 sin 2x cos 3xdx = 0 π 3 (sin(5x) + sin(−x))dx 0 Z = π 3 (sin(5x) − sin(x))dx 0 π 3 − cos(5x) = + cos x 5 0 1 1 1 −2 = − + + −1= . 10 2 5 5 Z 5. Find p 2 x2 − 1dx, for x ≥ 1. It is often a√good idea √ to try the substitutions x = cos u or x = cosh u for integrals containing 2 the terms 1 − x or x2 − 1 respectively (where there is no factor x). p √ √ dx Since x ≥ 1 let x = cosh u. Then x2 − 1 = cosh2 u − 1 = sinh2 u = sinh u and = du sinh u. Z p 2 x2 − 1dx = Z Z = 2 sinh2 udu (cosh 2u − 1)du using the ‘double angle’ formula sinh 2u −u+C 2 = sinh u cosh u − u + C = p = x x2 − 1 − cosh−1 (x) + C. Note that the integral is only defined if x ≤ −1 or x ≥ 1. In the former case we would let x = − cosh u and then proceed in the same way. 2
© Copyright 2026 Paperzz