Nearfield spectroscopy Katrin F. Domke Emmy Noether Group Max Planck Institute for Polymer Research, Mainz [email protected] IMPRS Berlin April 2017 1 / 65 Nearfield spectroscopy Content Fundamentals I I I I Sub-wavelength optics, intro Plasmons The evanescent field Light/plasmon coupling Application I Tip-enhanced Raman spectroscopy 2 / 65 Nearfield spectroscopy Literature I C. Girard et al. The physics of the nearfield Rep. Prog. Phys. 63 (2000) 893 I Nearfield optics and surface plasmon polaritons (S. Kawata, Ed.) Springer 2001 I Principles of nano-optics (L. Novotny and B. Hecht, Eds) Cambridge University Press 2006 I J.M. Pitarke et al. Theory of surface plasmons and surface-plasmon polaritons Rep. Prog. Phys. 70 (2007) 1 I Principles of surface-enhanced Raman spectroscopy and related plasmonic effects (E.C. Le Ru and P. Etchegoin, Eds) Elsevier 2008 I Plasmonics. From basics to advanced topics. (S. Enoch and N. Bonod, Eds) Springer 2012 3 / 65 Nearfield spectroscopy: fundamentals 4 / 65 How small can we see? 5 / 65 Optical spectroscopy Spatial resolution is diffraction limited resolved Rayleigh criterion Abbe’s diffraction limit: d = unresolved λ 2nsinα 6 / 65 Optical spectroscopy Spatial resolution is diffraction limited resolved Rayleigh criterion Abbe’s diffraction limit: d = unresolved λ 2nsinα How can we push spatial optical resolution? 7 / 65 Optical spectroscopy beyond the diffraction limit Strategies to improve optical resolution I decrease wavelength of light source I increase refractive index (e.g. oil immersion) I use nonlinear optical effects (e.g. frequency doubling) I increase detectable spatial frequency −→ nearfield optics 8 / 65 Nearfield vs farfield Nearfield I I emerging from sub-wavelength source (λ<< r) decays exponentially (r−3 or r −4 ), non-propagating Farfield I I propagating far from source (λ>> r) decays with r−1 Dipole emission 9 / 65 Scanning nearfield optical microscopy (SNOM) With sub-wavelength metal probes d << λ metal aperture aperture-less (bulk metal) 10 / 65 Creating a near-field What happens when we illuminate a small metal aperture or tip? + + ? - + + + + - 11 / 65 Exciting plasmons! Collective oscillations of conduction-electron gas 12 / 65 What is a plasmon? Collective oscillations of conduction-electron gas I a density wave in an electron gas (analogous to a sound wave in a molecule gas) I exists mainly in metals which have weakly bound electrons (free-electron gas model, jellium model) I is a collective motion of billions of electrons in sync I can be described, like any other wave, in terms of a specific energy Ep and momentum p, or circular frequency ωp = Ep /~ and wavevector k = p/~. 13 / 65 The plasmon resonance frequency Electrons in an external electric field experience acceleration, friction and restoring forces. The plasmon resonance frequency depends on I element / composition (charge carrier density) I particle size and shape I dielectric environment A crude Coulomb - harmonic oscillator approximation: 1 1 e2 = me ωp2 r 2 4π0 r 2 s ne 2 where ωp ≈ plasmon frequency me 0 U(r ) = with U(r ) potential energy, r displacement, 0 vacuum permittivity, e electron charge, me electron effective mass, n charge carrier density 14 / 65 Plasmons applied: Why are metals shiny? Electrons screen light (external electromagnetic field), i.e. electron oscillations follow external field, up to a certain frequency when the external field oscillates too fast for the electrons to follow. Plasmon energy Ep = ωp ~ and momentum p = k~ What are typical energies for (volume) plasmons? 15 / 65 Plasmons applied: Why are metals shiny? Electrons screen light (external electromagnetic field), i.e. electron oscillations follow external field, up to a certain frequency when the external field oscillates too fast for the electrons to follow. Plasmon energy Ep = ωp ~ and momentum p = k~ What are typical energies for (volume) plasmons? Al Ep 16 / 65 Measuring plasmons energies with EELS Electron energy loss spectroscopy (electron-analogue of IR spectroscopy) Electrons (2 keV) are reflected from an Al surface and loose energy to plasmons. 1 2 3 4 5 What are 1, 2, 3, ...? 17 / 65 From bulk to surface to particle plasmons Moving towards lower plasmon energies + + + - - - + - + - + + + - - - d << λ ωbp = q ne 2 me 0 √ ωsp ≈ ωbp / 2 √ ωmp ≈ ωbp / 3 with ω plasmon frequency, n charge carrier density, me effective mass, 0 vacuum permittivity 18 / 65 From bulk to surface to particle plasmons Moving towards lower plasmon energies + + + - - - + - + - + + + - - - d << λ ωbp = q ne 2 me 0 √ ωsp ≈ ωbp / 2 √ ωmp ≈ ωbp / 3 with ω plasmon frequency, n charge carrier density, me effective mass, 0 vacuum permittivity Remember: oscillating charges emit a field 19 / 65 The evanescent field at surfaces Confined to the nm-regime Solution for Maxwell’s equations at metal/dielectric interface Propagation length: 10s of µm ([email protected] nm: 22 µm) Skin depth: 10s of nm (Au@600 nm: 30 nm (metal), 280 nm (air)) 20 / 65 The evanescent field at surfaces Confined to the nm-regime Solution for Maxwell’s equations at metal/dielectric interface Propagation length: 10s of µm ([email protected] nm: 22 µm) Skin depth: 10s of nm (Au@600 nm: 30 nm (metal), 280 nm (air)) Sub-wavelength confined field (in z) can be used for nano-optics! 21 / 65 Coupling of (farfield) light and plasmons Not so easy... I waves can couple: photon + plasmon = plasmon polariton I but bulk plasmons are longitudinal oscillations (parallel to propagation direction) - they don’t match transverse photons (perpendicular to propagation) I surface plasmons are transverse oscillations - but are mismatched in momentum at a flat metal/air interface light: kx = ~ω √ d c surface plasmon: ksp ~ω = c r m d m + d 22 / 65 Photon + plasmon = plasmon polariton The dispersion relation: ω vs k -plots 23 / 65 Photon + plasmon = plasmon polariton The dispersion relation: ω vs k -plots How can we excite plasmons with light? 24 / 65 Surface plasmon polariton excitation Nanostructures, Otto or Kretschmann configuration I provide missing momentum with nanostructure or grating I slow down light in high-refractive index material 25 / 65 Light incident at a metal interface is partially reflected and partially transmitted 26 / 65 The evanescent wave is generated at the critical angle of total internal reflection 27 / 65 Plasmon-based nano-optics extraordinary transmission Wood's anomaly fancy world-record stuff 28 / 65 Nearfield spectroscopy Application Tip-enhanced Raman spectroscopy 29 / 65 AFM/STM sample topography 60nm 60nm Nanoscale structure! Nanoscale chemistry? 30 / 65 Wouldn’t it be nice if ... O guanine N HN H2N N N H H N 60nm 60nm cytosine O N NH2 Nanoscale structure and nanoscale chemistry! 31 / 65 The ideal tool Identification I chemical specificity I label-free I quantitative response I non-invasive Localization I high sensitivity I interfacial specificity 32 / 65 Raman vibrational spectroscopy with light excite atomic motions Ein Eex Evib = Ein - Eex 33 / 65 Raman vibrational spectroscopy with light excite atomic motions Ein Eex Evib = Ein - Eex C=O C-O Si-O O-H Me-O C-H Evib 4000 C≡C C=C C-C 3000 2000 1000 wavenumbers / cm-1 stretching detect vibrational fingerprint 0 34 / 65 Raman vibrational spectroscopy Low scattering cross sections Raman scattering 106 photons 1 photon 35 / 65 Raman vibrational spectroscopy Low scattering cross sections Raman scattering 106 photons 1 photon → boost Raman signal 36 / 65 Surface-enhanced Raman scattering (SERS) Strong nearfield through plasmon excitation Fleischmann et al. Chem. Phys. Lett. 26 (1974) 163 Jeanmaire and Van Duyne J. Electroanal. Chem. 84 (1977) 1 37 / 65 Surface-enhanced Raman scattering (SERS) Strong nearfield through plasmon excitation → limited to rough surfaces of Au, Ag, Cu Fleischmann et al. Chem. Phys. Lett. 26 (1974) 163 Jeanmaire and Van Duyne J. Electroanal. Chem. 84 (1977) 1 38 / 65 Shalaev’s hot spots Localized surface plasmons G(x,y): field enhancement 2 x 104 1 x 104 100 50 50 x / nm dimer y / nm 100 sphere above surface Shalaev et al. Phys. Rev. B 57 (1998) 13265 39 / 65 Shalaev’s hot spots Localized surface plasmons G(x,y): field enhancement 2 x 104 1 x 104 100 50 50 x / nm dimer y / nm 100 sphere above surface Shalaev et al. Phys. Rev. B 57 (1998) 13265 40 / 65 Shalaev’s hot spots Localized surface plasmons G(x,y): field enhancement 2 x 104 1 x 104 100 50 50 x / nm dimer y / nm 100 sphere above surface Shalaev et al. Phys. Rev. B 57 (1998) 13265 41 / 65 Tip-enhanced Raman scattering (TERS) 42 / 65 Wessel’s prediction 1985 • nanometer optical resolution • single-molecule sensitivity • but complex setup J. Wessel JOSA B 2 (1985) 1538 43 / 65 ... 15 years later First TERS spectrum Zenobi and coworkers Chem. Phys. Lett. 318 (2000) 131 44 / 65 Molecular interactions Co-porphyrin at Au(111) in air B A 50 x 50 nm2 B A KFD et al. ChemPhysChem 10 (2009) 1794 45 / 65 Molecular orientation and interactions DNA base pair formation at Au(111) in air intensity (arbitr. units) T T A A z AT Raman shift (cm-1) ! Dai Zhang, KFD, Bruno Pettinger ChemPhysChem 11 (2010) 1662; KFD et al. JACS 129 (2007) 6708 46 / 65 Single-molecule TERS Dye at Au(111) in air Au(111) KFD et al. JACS 128 (2006) 14721; JPCC 111 (2007) 8611 47 / 65 Sub single-molecule TERS (UHV) Unprecedented chemical spatial resolution UHV-STM UHV-TERS Zhang et al. Nature 498 (2013) 82 48 / 65 Sub single-molecule TERS (UHV) Unprecedented chemical spatial resolution UHV-STM UHV-TERS → Raman mapping with sub-nm resolution Zhang et al. Nature 498 (2013) 82 49 / 65 Electrochemical TERS (EC-TERS) TERS A B scanning probe B CV A Challenges: 1) TERS in liquid and 2) under potential control. 50 / 65 TERS at solid/liquid interfaces in transmission Zenobi and coworkers J. Raman Spectrosc. 40 (2009) 1392; Van Duyne and coworkers Nano Letters 15 (2015) 7956. 51 / 65 TERS at solid/liquid interfaces in transmission Zenobi and coworkers J. Raman Spectrosc. 40 (2009) 1392; Van Duyne and coworkers Nano Letters 15 (2015) 7956. 52 / 65 TERS at solid/liquid interfaces in transmission × opaque substrates Zenobi and coworkers J. Raman Spectrosc. 40 (2009) 1392; Van Duyne and coworkers Nano Letters 15 (2015) 7956. 53 / 65 TERS at solid/liquid interfaces in side illumination Bin Ren and coworkers J. Am. Chem. Soc. 137 (2015) 11928. 54 / 65 TERS at solid/liquid interfaces in side illumination × limited tip scanning Bin Ren and coworkers J. Am. Chem. Soc. 137 (2015) 11928. 55 / 65 Side-illumination EC-TERS @ MPIP Opaque samples, potential control hite ht b STM a 55° Objective b ve Coated tip STM Coated tip Ob jec ti d Sample White light Objec Sample c d d Martı́n Sabanés, Driessen, KFD Anal. Chem. 88 (2016) 7108 56 / 65 Resonant TERS of dye/Au(111) in water Raman enhancement of 105 air 1615 cm-1 1364 cm-1 1175 cm-1 Intensity (arb. unit) 801 cm-1 a b water c d e 400 600 800 1000 1200 1400 1600 tip check Raman shift (cm-1) Martı́n Sabanés, Driessen, KFD Anal. Chem. 88 (2016) 7108 57 / 65 Nonresonant TERS of PhS/Au(111) in water Intensity (arb. unit) Monolayer sensitivity a air b x20 400 600 800 1000 1200 1400 1600 c water d Raman shift (cm-1) Martı́n Sabanés, Driessen, KFD Anal. Chem. 88 (2016) 7108 58 / 65 Nonresonant TERS of adenine/Au(111) in 0.01 M H2 SO4 Intensity (arbitr. units) 1.8 mW, 5 s approached retracted 0 500 1000 1500 Raman shift (1/cm) 2000 2500 59 / 65 EC-TERS proof of principle: adenine/Au(111) Intensity (arbitr. units) 1.8 mW, 5 s -0.4 V vs Ptpseudo 0.5 V vs Ptpseudo Ebias = 0.4 V 0 500 1000 1500 Raman shift (1/cm) 2000 2500 Martı́n Sabanés, KFD ChemElectroChem (2017) submitted 60 / 65 EC-TERS proof of principle: adenine/Au(111) 1.8 mW, 5 s Intensity (arbitr. units) Seminar by Natalia Martín Sabanés -0.4 V vs Pt tomorrow 11.30h Richard Willstädter Haus pseudo 0.5 V vs Ptpseudo Ebias = 0.4 V 0 500 1000 1500 Raman shift (1/cm) 2000 2500 Martı́n Sabanés, KFD ChemElectroChem (2017) submitted 61 / 65 Outlook: Protein structure and MoS2 electrocatalysis Nanoscale structure and chemistry elucidated with EC-TERS 1 H 2O T 36 ˚C D 2O 3 2 ˚C 2 NH4Ac 2 < pH < 11 4 Au --- +++ 62 / 65 Nearfield spectroscopy Content Fundamentals I I I I Sub-wavelength optics, intro Plasmons The evanescent field Light/plasmon coupling Application I Tip-enhanced Raman spectroscopy Thank you! 63 / 65 64 / 65 The dielectric function of a metal Some clues how to get there http://emlab.utep.edu/ee5390em21/Lecture%202%20– %20Lorentz%20and%20Drude%20models.pdf 65 / 65
© Copyright 2026 Paperzz