AERO3630 - UNSW Engineering

AERO3630
AERODYNAMICS
Contents
1.
Staff Contact Details ...................................................................................................... 2
2.
Course Details ............................................................................................................... 3
3.
Teaching Strategies ....................................................................................................... 4
4.
Course Schedule ........................................................................................................... 5
5.
Assessment ................................................................................................................... 6
6.
Expected Resources For Students ................................................................................. 9
7.
Course Evaluation And Development ............................................................................. 9
8.
Academic Honesty And Plagiarism ................................................................................ 9
9.
Administrative Matters.................................................................................................. 10
Appendix A: Engineers Australia (EA) Professional Engineer Competency Standards........ 11
Course Outline: AERO3630
1
Contact details for course convener
A/Prof N.A. Ahmed
Room: Ainsworth Building, room 311E
Tel: (02) 9385 4080
E: [email protected]
Mr. David Lyons
Room: Ainsworth Building, room 208D
Tel: (02) 9385 6120
E: [email protected]
Contact details of casual staff
George Matsoukas
E; [email protected]
Joshua Yen
E; [email protected]
Yongying Zheng
E; [email protected]
Yendrew Yauwenas
E: [email protected]
Contact details for laboratory staff
Bruce Oliver
Room: Willis Annexe, Lab 116A
Tel: 9385 4086
Consultation
Please check with each Lecturer/Laboratory Officer/Casual Staff of this course for their
consultation times.
Administration
All issues regarding administration should be directed to A/Prof N. A. Ahmed or any of the
demonstrators via email.
Course Outline: AERO3630
2
Units of credit
This is a 6 unit-of-credit (UoC) course, and involves 3 hours per week (h/w) of face-to-face
contact.
The UNSW website states “The normal workload expectations of a student are
approximately 25 hours per semester for each UoC, including class contact hours, other
learning activities, preparation and time spent on all assessable work. Thus, for a full-time
enrolled student, the normal workload, averaged across the 16 weeks of teaching, study and
examination periods, is about 37.5 hours per week.”
This means that you should aim to spend about 9 h/w on this course. The additional time
should be spent in making sure that you understand the lecture material, completing the set
assignments, further reading, and revising for any examinations.
There is no parallel teaching in this course.
Contact Hours
Lectures
Demonstrations/Lab
Day
Wednesday
Weeks 1-8, 11-12
Wednesday
Weeks 9,10
Time
14:- 17
Location
Ainsworth 202
14-17
Willis Annexe Lab 116A
Summary of the course
This course focusses on fundamental principles associated with aircraft aerodynamics and
physical experimentation using facilities such as wind tunnels.
Aims of the course
The overall objective is to introduce the students to the qualitative and quantitative
examination of fluids in motions and the physical forces exerted by fluids, particularly those
considered incompressible and inviscid, on their boundaries with a view to calculating
aerodynamic forces on streamlined bodies such as wings of aircraft. Thus the emphasis is
on lift and drag force components in incompressible flow. The students will also be
introduced to the basic techniques associated with physical and numerical experimentations.
This course extends the basic thermodynamic and fluid mechanical principles which you
learned in MMAN2600 and MMAN2700 to aerospace engineering and builds on the reportwriting skills which you commenced in ENGG1000 and self-investigative investigations,
analysis and critical appraisals.
Course Outline: AERO3630
3
Student learning outcomes
After successfully completing this course, you should be able to:
Learning Outcome
1. Be familiar with the basic principles associated with
incompressible and compressible flows in wing design
2. Demonstration of the significance of some of the concepts
used in wing design through physical experimentation
3. Decide on the appropriate class of wing in the design of a
new aircraft.
Be able to communicate, be creative, understand and
4. apply knowledge in a responsible and ethical and
professional manner
EA Stage 1 Competencies
PE 1.1, 1.2, 1.3, 1.5
PE 2: (PE 2.1-2.3)
PE 3: (PE 2.1-2.3)
PE 2.3, 3.2)
Note: EA = Engineers Australia (EA); PE = Professional Engineers (PE):
Lectures
Lectures in the course are designed to cover the terminology and core concepts and
theories in the design, selection of airfoil sections wing configurations in aircraft design.
Laboratory Experiments
Laboratory experiments do not simply reiterate the texts, but build on the lecture topics using
physical experimentation that are generally used in research and aerospace industries.
Demonstrations and Practice problems
They are designed to provide you with feedback and discussion on the various topics
covered both in lectures and laboratory works, and to investigate problem areas in greater
depth to ensure that you understand the application.
The content reflects the experience of the lecturers in aircraft research and design and
typical examples drawn from that experience are presented throughout the lectures and
Practice Problems.
Remember, effective learning is supported when you are actively engaged in the learning
process and by a climate of enquiry, and these are both an integral part of the lectures and
Practice Problems.
You become more engaged in the learning process if you can see the relevance of your
studies to professional, disciplinary and/or personal contexts, and the relevance is shown in
the lectures, laboratory experiments and assignments by way of examples drawn from
practical world.
Dialogue is encouraged between you, others in the class and the lecturers. Diversity of
experiences is acknowledged, as some students in each class have prior industry or
practical experience. Your experiences are drawn on to illustrate various aspects, and this
helps to increase motivation and engagement.
Course Outline: AERO3630
4
It is expected that assignments will be marked and handed back within two weeks following
submission. You will have feedback and discussion while fresh in your mind to improve the
learning experience.
All schedules and descriptions provided below may be changed at short notice to suit
exigencies.
Lecture/Problem solving/Lab Schedule
FOR AERO3630/NAVL3620
Day: WEDNESDAY
TIME: 14-17
WK
Topic
Who should
attend?
Location Lecturer/
Demonstrators
1
Intro to Aerodynamics/
Potential Flow Concepts
AERO3630
ME202
NA
2
Thin Airfoil Theory
AERO3630
ME202
NA/JY/YY/YYZ/GM
3
Lifting Line Theory/
Finite Wing Theory
AERO3630
ME202
NA/JY/YY/YYZ/GM
4
CLASS TEST 1/
Compressible flow
AERO3630
ME202
NA/JY/YY/YYZ/GM
5
Introduction to Experimentation/
Dimensional Analysis
AERO3630/
NAVL3620
ME202
NA/JY/YY/YYZ/GM
6
Introduction to Experimentation/
Dimensional Analysis/
AERO3630/
NAVL3620
ME202
NA/JY/YY/YYZ/GM
7
Compressible Flow/
Shock Waves/
Prandtl Meyer Expansion Method
AERO3630
ME202
NA/JY/YY/YYZ/GM
8
Method of characteristics/
Small perturbation theory/
CLASS TEST 2
AERO3630
ME202
NA/JY/YY/YYZ/GM
9
Experiment 1:
Smoke flow visualisation
AERO3630/
NAVL3620
UG
LAB116A
DL/JY/YY/YYZ/GM
Experiment 2:
Pressure Distribution around a
cylinder
STUDY BREAK
Course Outline: AERO3630
5
10
Experiment 3:
Lift of an airfoil
AERO3630/
NAVL3620
UG
LAB116A
DL/JY/YY/YYZ/GM
Experiment 4:
Drag of an airfoil
11
WRAP UP** for Aero students
AERO3630
ME202
JY/YY/YYZ/DM
12
REVISION/ CLASS TEST 3
AERO3630/
NAVL3620
ME202
JY/YY/YYZ/DM
**Wrap up for Naval Students will be held on Monday during 10am-1pm in UNSW
Business School 232 (JY/YY/YYZ/DM)
General
You will be assessed through a combination of assignments, class tests, laboratory work
and a final examination. In order to pass the course, you must achieve an overall mark of at
least 50%.
Details
A. Class Test No.1 (based on Lectures/Practice Problems)
Class Test no. 1 will be on Lecture materials covered up to week 3 and will be held in Week
4. The test will be of 30 minutes duration and multiple-choice type.
The learning outcome assessed in Class Test 1 are: PE1.1, 1.2, 1.3, 1.5, 2.1, 2.2, 2.3
B. Class Test no.2 (based on Lectures/Practice Problems)
Class Test No. 2 will be on Lecture materials covered up to week 7 and will be held in Week
8. The test will be of 30 minutes duration and multiple-choice type.
The learning outcome assessed in Class Test 2 are: PE1.1, 1.2, 1.3, 1.5, 2.1, 2.2, 2.3
C. Class Test No.3 (on Flow Experimentation)
Class Test No. 3 will be on Flow Experimentation will be held in Week 12. The test will be of
one hour duration and will be based on the Flow Experimentation material covered up to the
end of Week 10. The test will be of the multiple-choice type.
The learning outcome assessed in Class Test 3 are: PE1.1, 1.2, 1.3, 1.5, 2.1, 2.2, 2.3
D. Flow Experimentation Logbook
For the Flow Experimentation you must keep a logbook. The log book will be a bound A4
exercise book containing the date of experiment, observations, notes, calculations, figures
and your comments while conducting the experiment. No loose sheets are acceptable. All
Course Outline: AERO3630
6
handouts related to a particular experiment should be appropriately stapled or pasted into
the log book. The log book is to be submitted to the Lecturer-in-Charge /Demonstrators in
Week 12 with the Flow Experimentation report.
The learning outcome assessed in logbook are: PE 2.3, 2.4
E. Flow Experimentation Report
Following the class test, you will be required to write a report on one of the four experiments
which have been conducted in the wind tunnel, using the details from your logbook and
lecture notes. The specific experiment will be at random, and will be decided by the lecturer,
but will be the same experiment for the whole class. Your report is to be submitted to the
Lecturer-in-charge in Week 12 with the Flow Experimentation logbook.
The learning outcome assessed in report are: PE 2.3, 2.4, 3.1-3.5
F.
Mini Research Project
Proposal Draft: Select your research topic in the field of Aerodynamics and provide a brief
description of your proposal (less than 100 words). Submit your proposal draft along with the
topic name in pdf or word format online in Moodle.
Detailed Proposal: Construct your research proposal in details using background research.
You must describe the findings from at least five journal articles and explain how these
findings relate to the studies undertaken in your research topics. You must critically assess
the problem statement, hypothesis, methodology, result, and contribution to knowledge
regarding your research topic. You will need to submit your work in pdf or word format online
in Moodle.
The Mini Research Project must be uploaded in Moodle by week 11
The learning outcome assessed in research project are: PE 1.1-6, 2.3, 2.4, 3.1-3.5
G. Final Examination:
There will be a formal examination of two hour duration. There will two questions in total of
equal marks
The learning outcome assessed in final examination are: PE 1.1-5, 2.3, 2.4, 3.1-3.3
You must be available for all tests and examinations. Final examinations for each course are
held during the University examination periods, which are June for Semester 1 and
November for Semester 2.
Provisional Examination timetables are generally published on myUNSW in May for
Semester 1 and September for Semester 2
For further information on exams, please see Administrative Matters.
Calculators
You will need to provide your own calculator, of a make and model approved by UNSW, for
the examinations. The list of approved calculators is shown at
https://student.unsw.edu.au/exam-approved-calculators-and-computers
Course Outline: AERO3630
7
It is your responsibility to ensure that your calculator is of an approved make and model, and
to obtain an “Approved” sticker for it from the School Office or the Engineering Student
Centre prior to the examination. Calculators not bearing an “Approved” sticker will not be
allowed into the examination room
Presentation
All submissions should have a standard School cover sheet which is available from this
subject’s Moodle page.
All submissions are expected to be neat and clearly set out. Your results are the pinnacle of
all your hard work. Presenting them clearly gives the marker the best chance of
understanding your method; even if the numerical results are incorrect.
Submission
Late submissions will be penalised 5 marks per calendar day (including weekends). An
extension may only be granted in exceptional circumstances. Where an assessment task is
worth less than 20% of the total course mark and you have a compelling reason for being
unable to submit your work on time, you must seek approval for an extension from the
course convenor before the due date. Special consideration for assessment tasks of 20%
or greater must be processed through https://student.unsw.edu.au/special-consideration.
It is always worth submitting late assessment tasks when possible. Completion of the work,
even late, may be taken into account in cases of special consideration.
Special Consideration and Supplementary Assessment
For details of applying for special consideration and conditions for the award of
supplementary assessment, see Administrative Matters, available on the School website and
on Moodle, and the information on UNSW’s Special Consideration page.
The distribution of marks are given below:
Class Test No.1 (based on Lectures/Problem solving)
Class Test No.2 (based on Lecture/Problem solving)
Class Test No.3 (based on Flow Experimentation)
Flow Experimentation Log Book
Flow Experimentation Report
Mini Research Project (Max 5,000 words)
Main body of text:
Aims, Significance and Novelties/Innovation
Methodologies
Conclusions
Up-to-date information
Final examination
Total
Course Outline: AERO3630
Marks
10
10
20
5
15
20
Weight
10%
10%
20%
5%
15%
20%
(10)
(5)
(3)
(2)
20
20%
100
100%
8
Lecture notes and other relevant materials for Lectures, Demonstrations, Problem Solving
and Experimentation will be available on-line in Moodle and updated as necessary.
Suggested readings
Anderson, J D, Fundamentals of Aerodynamics, 2nd Ed, McGraw Hill, 1995
McCormick, B W, Aerodynamics, Aeronautics and Flight Mechanics, 2nd edition, Wiley,
1997
Abbott, I H & von Doenhoff, A E, Theory of Wing Sections, Dover, 1956
Clancy, Aerodynamics, Pitman, 1979
Rae & Pope, Low Speed Wind Tunnel Testing, 2nd Ed. Wiley, 1984
Other Resources
If you wish to explore any of the lecture topics in more depth, then other resources are
available and assistance may be obtained from the UNSW Library.
One starting point for assistance is: https://www.library.unsw.edu.au/servicesfor/index.html
Feedback on the course is gathered periodically using various means, including the Course
and Teaching Evaluation and Improvement (CATEI) process, informal discussion in the final
class for the course, and the School’s Student/Staff meetings. Your feedback is taken
seriously, and continual improvements are made to the course based, in part, on such
feedback.
In this course, recent improvements resulting from student feedback include a reduction in
the number of laboratory experiments and report writing
UNSW has an ongoing commitment to fostering a culture of learning informed by academic
integrity. All UNSW students have a responsibility to adhere to this principle of academic
integrity. Plagiarism undermines academic integrity and is not tolerated at UNSW. Plagiarism
at UNSW is defined as using the words or ideas of others and passing them off as your own.
Plagiarism is a type of intellectual theft. It can take many forms, from deliberate cheating to
accidentally copying from a source without acknowledgement. UNSW has produced a
website with a wealth of resources to support students to understand and avoid plagiarism:
https://student.unsw.edu.au/plagiarism The Learning Centre assists students with
understanding academic integrity and how not to plagiarise. They also hold workshops and
can help students one-on-one.
Course Outline: AERO3630
9
You are also reminded that careful time management is an important part of study and one
of the identified causes of plagiarism is poor time management. Students should allow
sufficient time for research, drafting and the proper referencing of sources in preparing all
assessment tasks.
If plagiarism is found in your work when you are in first year, your lecturer will offer you
assistance to improve your academic skills. They may ask you to look at some online
resources, attend the Learning Centre, or sometimes resubmit your work with the problem
fixed. However more serious instances in first year, such as stealing another student’s work
or paying someone to do your work, may be investigated under the Student Misconduct
Procedures.
Repeated plagiarism (even in first year), plagiarism after first year, or serious instances, may
also be investigated under the Student Misconduct Procedures. The penalties under the
procedures can include a reduction in marks, failing a course or for the most serious matters
(like plagiarism in an honours thesis) even suspension from the university. The Student
Misconduct Procedures are available here:
http://www.gs.unsw.edu.au/policy/documents/studentmisconductprocedures.pdf
Further information on School policy and procedures in the event of plagiarism is presented
in a School handout, Administrative Matters, available on the School website.
You are expected to have read and be familiar with Administrative Matters, available on the
School website: https://www.engineering.unsw.edu.au/mechanicalengineering/sites/mech/files/u41/S2-2015-Administrative-Matters_20150721.pdf
This document contains important information on student responsibilities and support,
including special consideration, assessment, health and safety, and student equity and
diversity.
N.A. Ahmed
July 2015
Course Outline: AERO3630
10
Program Intended Learning Outcomes
PE1.1 Comprehensive, theory-based understanding of underpinning
fundamentals
PE2: Engineering
Application Ability
PE1: Knowledge
and Skill Base
PE1.2 Conceptual understanding of underpinning maths, analysis, statistics,
computing
PE1.3 In-depth understanding of specialist bodies of knowledge
PE1.4 Discernment of knowledge development and research directions
PE1.5 Knowledge of engineering design practice
PE1.6 Understanding of scope, principles, norms, accountabilities of
sustainable engineering practice
PE2.1 Application of established engineering methods to complex problem
solving
PE2.2 Fluent application of engineering techniques, tools and resources
PE2.3 Application of systematic engineering synthesis and design
processes
PE2.4 Application of systematic approaches to the conduct and
management of engineering projects
PE3: Professional
and Personal
Attributes
PE3.1 Ethical conduct and professional accountability
PE3.2 Effective oral and written communication (professional and lay
domains)
PE3.3 Creative, innovative and pro-active demeanour
PE3.4 Professional use and management of information
PE3.5 Orderly management of self, and professional conduct
PE3.6 Effective team membership and team leadership
Course Outline: AERO3630
11